Bayesian estimation of phase response curves.
Neural Netw
; 23(6): 752-63, 2010 Aug.
Article
em En
| MEDLINE
| ID: mdl-20466516
Phase response curve (PRC) of an oscillatory neuron describes the response of the neuron to external perturbation. The PRC is useful to predict synchronized dynamics of neurons; hence, its measurement from experimental data attracts increasing interest in neural science. This paper introduces a Bayesian method for estimating PRCs from data, which allows for the correlation of errors in explanatory and response variables of the PRC. The method is implemented with a replica exchange Monte Carlo technique; this avoids local minima and enables efficient calculation of posterior averages. A test with artificial data generated by the noisy Morris-Lecar equation shows that the proposed method outperforms conventional regression that ignores errors in the explanatory variable. Experimental data from the pyramidal cells in the rat motor cortex is also analyzed with the method; a case is found where the result with the proposed method is considerably different from that obtained by conventional regression.
Texto completo:
1
Coleções:
01-internacional
Base de dados:
MEDLINE
Assunto principal:
Tempo de Reação
/
Processamento de Sinais Assistido por Computador
/
Teorema de Bayes
/
Redes Neurais de Computação
/
Rede Nervosa
/
Neurônios
Tipo de estudo:
Health_economic_evaluation
/
Prognostic_studies
Limite:
Animals
Idioma:
En
Revista:
Neural Netw
Assunto da revista:
NEUROLOGIA
Ano de publicação:
2010
Tipo de documento:
Article
País de afiliação:
Japão
País de publicação:
Estados Unidos