Your browser doesn't support javascript.
loading
An application of multivariate statistical analysis for Query-Driven Visualization.
Gosink, Luke J; Garth, Christoph; Anderson, John C; Bethel, E Wes; Joy, Kenneth I.
Afiliação
  • Gosink LJ; Pacific Northwest National Laboratory, Mail Stop K7-20, Battelle Memorial Institute, PO Box 999, Richland, Washington 99352, USA. luke.gosink@pnl.gov
IEEE Trans Vis Comput Graph ; 17(3): 264-75, 2011 Mar.
Article em En | MEDLINE | ID: mdl-20498506
Driven by the ability to generate ever-larger, increasingly complex data, there is an urgent need in the scientific community for scalable analysis methods that can rapidly identify salient trends in scientific data. Query-Driven Visualization (QDV) strategies are among the small subset of techniques that can address both large and highly complex data sets. This paper extends the utility of QDV strategies with a statistics-based framework that integrates nonparametric distribution estimation techniques with a new segmentation strategy to visually identify statistically significant trends and features within the solution space of a query. In this framework, query distribution estimates help users to interactively explore their query's solution and visually identify the regions where the combined behavior of constrained variables is most important, statistically, to their inquiry. Our new segmentation strategy extends the distribution estimation analysis by visually conveying the individual importance of each variable to these regions of high statistical significance. We demonstrate the analysis benefits these two strategies provide and show how they maybe used to facilitate the refinement of constraints over variables expressed in a user's query. We apply our method to data sets from two different scientific domains to demonstrate its broad applicability.
Assuntos

Texto completo: 1 Coleções: 01-internacional Base de dados: MEDLINE Assunto principal: Análise Multivariada / Interpretação Estatística de Dados / Armazenamento e Recuperação da Informação Tipo de estudo: Prognostic_studies Idioma: En Revista: IEEE Trans Vis Comput Graph Assunto da revista: INFORMATICA MEDICA Ano de publicação: 2011 Tipo de documento: Article País de afiliação: Estados Unidos País de publicação: Estados Unidos

Texto completo: 1 Coleções: 01-internacional Base de dados: MEDLINE Assunto principal: Análise Multivariada / Interpretação Estatística de Dados / Armazenamento e Recuperação da Informação Tipo de estudo: Prognostic_studies Idioma: En Revista: IEEE Trans Vis Comput Graph Assunto da revista: INFORMATICA MEDICA Ano de publicação: 2011 Tipo de documento: Article País de afiliação: Estados Unidos País de publicação: Estados Unidos