Construction of patient specific atlases from locally most similar anatomical pieces.
Med Image Comput Comput Assist Interv
; 13(Pt 3): 155-62, 2010.
Article
em En
| MEDLINE
| ID: mdl-20879395
Radiotherapy planning requires accurate delineations of the critical structures. To avoid manual contouring, atlas-based segmentation can be used to get automatic delineations. However, the results strongly depend on the chosen atlas, especially for the head and neck region where the anatomical variability is high. To address this problem, atlases adapted to the patient's anatomy may allow for a better registration, and already showed an improvement in segmentation accuracy. However, building such atlases requires the definition of a criterion to select among a database the images that are the most similar to the patient. Moreover, the inter-expert variability of manual contouring may be high, and therefore bias the segmentation if selecting only one image for each region. To tackle these issues, we present an original method to design a piecewise most similar atlas. Given a query image, we propose an efficient criterion to select for each anatomical region the K most similar images among a database by considering local volume variations possibly induced by the tumor. Then, we present a new approach to combine the K images selected for each region into a piecewise most similar template. Our results obtained with 105 CT images of the head and neck show that our method reduces the over-segmentation seen with an average atlas while being robust to inter-expert manual segmentation variability.
Texto completo:
1
Coleções:
01-internacional
Base de dados:
MEDLINE
Assunto principal:
Algoritmos
/
Reconhecimento Automatizado de Padrão
/
Interpretação de Imagem Radiográfica Assistida por Computador
/
Tomografia Computadorizada por Raios X
/
Técnica de Subtração
/
Imageamento Tridimensional
/
Cabeça
/
Modelos Anatômicos
/
Pescoço
Tipo de estudo:
Diagnostic_studies
/
Prognostic_studies
Limite:
Humans
Idioma:
En
Revista:
Med Image Comput Comput Assist Interv
Assunto da revista:
DIAGNOSTICO POR IMAGEM
/
INFORMATICA MEDICA
Ano de publicação:
2010
Tipo de documento:
Article
País de afiliação:
França
País de publicação:
Alemanha