The biocompatibility and antimicrobial activity of nanocomposites from polyurethane and nano silicate platelets.
J Biomed Mater Res A
; 99(2): 192-202, 2011 Nov.
Article
em En
| MEDLINE
| ID: mdl-21976444
Nanocomposites from a polyether-type waterborne polyurethane (PU) and 0.1 wt % of silicate materials were prepared. The individual silicate materials were natural clays (montmorillonite and mica), their exfoliated clays [nano silicate platelets (NSP) and nano mica platelets], and NSP modified with C18 fatty amine (NSP-S). The physico-chemcical properties and antimicrobial activity of the nanocomposites were characterized in vitro. The biostability and biocompatibility of the nanocomposites were evaluated in vivo. The nanocomposites exhibited various surface morphologies with phase separation of hard and soft domains in nanometric scales. The nanocomposite containing NSP (PU-NSP) showed better endothelial cell attachment and gene expression. The better biocompatibility of PU-NSP and PU-NSP-S was evidenced by the lower thickness of foreign body capsules in rat subcutaneous implantation. PU-NSP had the least surface degradation in vivo as demonstrated by the electron microscopy and infrared spectroscopy. This may be associated with the different surface structure. PU-NSP and PU-NSP-S showed strong bacteriostatic effects, which suggested that the nano clay in the polymer matrix may still interact with the microbes.
Texto completo:
1
Coleções:
01-internacional
Base de dados:
MEDLINE
Assunto principal:
Poliuretanos
/
Staphylococcus aureus
/
Materiais Biocompatíveis
/
Silicatos
/
Nanocompostos
/
Anti-Infecciosos
Limite:
Animals
/
Humans
Idioma:
En
Revista:
J Biomed Mater Res A
Assunto da revista:
ENGENHARIA BIOMEDICA
Ano de publicação:
2011
Tipo de documento:
Article
País de afiliação:
China
País de publicação:
Estados Unidos