Low-voltage organic field-effect transistors (OFETs) with solution-processed metal-oxide as gate dielectric.
ACS Appl Mater Interfaces
; 3(12): 4662-7, 2011 Dec.
Article
em En
| MEDLINE
| ID: mdl-22007599
In this study, low-voltage copper phthalocyanine (CuPc)-based organic field-effect transistors (OFETs) are demonstrated utilizing solution-processed bilayer high-k metal-oxide (Al(2)O(y)/TiO(x)) as gate dielectric. The high-k metal-oxide bilayer is fabricated at low temperatures (< 200 °C) by a simple spin-coating technology and can be controlled as thin as 45 nm. The bilayer system exhibits a low leakage current density of less than 10(-5) A/cm(2) under bias voltage of 2 V, a very smooth surface with RMS of about 0.22 nm and an equivalent k value of 13.3. The obtained low-voltage CuPc based OFETs show high electric performance with high hole mobility of 0.06 cm(2)/(V s), threshold voltage of -0.5 V, on/off ration of 2 × 10(3) and a very small subthreshold slope of 160 mV/dec when operated at -1.5 V. Our study demonstrates a simple and robust approach that could be used to achieve low-voltage operation with solution-processed technique.
Texto completo:
1
Coleções:
01-internacional
Base de dados:
MEDLINE
Idioma:
En
Revista:
ACS Appl Mater Interfaces
Assunto da revista:
BIOTECNOLOGIA
/
ENGENHARIA BIOMEDICA
Ano de publicação:
2011
Tipo de documento:
Article
País de afiliação:
China
País de publicação:
Estados Unidos