Your browser doesn't support javascript.
loading
Regional cardiac motion and strain estimation in three-dimensional echocardiography: a validation study in thick-walled univentricular phantoms.
Heyde, Brecht; Cygan, Szymon; Choi, Hon Fai; Lesniak-Plewinska, Beata; Barbosa, Daniel; Elen, An; Claus, Piet; Loeckx, Dirk; Kaluzynski, Krzysztof; D'hooge, Jan.
Afiliação
  • Heyde B; Laboratory of Cardiovascular Imaging and Dynamics, University of Leuven (KU Leuven), Leuven, Belgium. brecht.heyde@med.kuleuven.be
Article em En | MEDLINE | ID: mdl-22547278
ABSTRACT
Automatic quantification of regional left ventricular deformation in volumetric ultrasound data remains challenging. Many methods have been proposed to extract myocardial motion, including techniques using block matching, phase-based correlation, differential optical flow methods, and image registration. Our lab previously presented an approach based on elastic registration of subsequent volumes using a B-spline representation of the underlying transformation field. Encouraging results were obtained for the assessment of global left ventricular function, but a thorough validation on a regional level was still lacking. For this purpose, univentricular thick-walled cardiac phantoms were deformed in an experimental setup to locally assess strain accuracy against sonomicrometry as a reference method and to assess whether regions containing stiff inclusions could be detected. Our method showed good correlations against sonomicrometry r(2) was 0.96, 0.92, and 0.84 for the radial (ε(RR)), longitudinal (ε(LL)), and circumferential (ε(CC)) strain, respectively. Absolute strain errors and strain drift were low for ε(LL) (absolute mean error 2.42%, drift -1.05%) and ε(CC) (error 1.79%, drift -1.33%) and slightly higher for ε(RR) (error 3.37%, drift 3.05%). The discriminative power of our methodology was adequate to resolve full transmural inclusions down to 17 mm in diameter, although the inclusion-to-surrounding tissue stiffness ratio was required to be at least 52 (absolute difference of 39.42 kPa). When the inclusion-to-surrounding tissue stiffness ratio was lowered to approximately 21 (absolute difference of 22.63 kPa), only larger inclusions down to 27 mm in diameter could still be identified. Radial strain was found not to be reliable in identifying dysfunctional regions.
Assuntos

Texto completo: 1 Coleções: 01-internacional Base de dados: MEDLINE Assunto principal: Processamento de Imagem Assistida por Computador / Imagens de Fantasmas / Ecocardiografia Tridimensional / Coração Tipo de estudo: Prognostic_studies Limite: Humans Idioma: En Revista: IEEE Trans Ultrason Ferroelectr Freq Control Assunto da revista: MEDICINA NUCLEAR Ano de publicação: 2012 Tipo de documento: Article País de afiliação: Bélgica País de publicação: EEUU / ESTADOS UNIDOS / ESTADOS UNIDOS DA AMERICA / EUA / UNITED STATES / UNITED STATES OF AMERICA / US / USA

Texto completo: 1 Coleções: 01-internacional Base de dados: MEDLINE Assunto principal: Processamento de Imagem Assistida por Computador / Imagens de Fantasmas / Ecocardiografia Tridimensional / Coração Tipo de estudo: Prognostic_studies Limite: Humans Idioma: En Revista: IEEE Trans Ultrason Ferroelectr Freq Control Assunto da revista: MEDICINA NUCLEAR Ano de publicação: 2012 Tipo de documento: Article País de afiliação: Bélgica País de publicação: EEUU / ESTADOS UNIDOS / ESTADOS UNIDOS DA AMERICA / EUA / UNITED STATES / UNITED STATES OF AMERICA / US / USA