Your browser doesn't support javascript.
loading
Bayesian hierarchical multi-subject multiscale analysis of functional MRI data.
Sanyal, Nilotpal; Ferreira, Marco A R.
Afiliação
  • Sanyal N; Department of Statistics, University of Missouri, 146 Middlebush Hall, Columbia, MO 65211-6100, United States. ns5x2@mail.missouri.edu
Neuroimage ; 63(3): 1519-31, 2012 Nov 15.
Article em En | MEDLINE | ID: mdl-22951257
We develop a methodology for Bayesian hierarchical multi-subject multiscale analysis of functional Magnetic Resonance Imaging (fMRI) data. We begin by modeling the brain images temporally with a standard general linear model. After that, we transform the resulting estimated standardized regression coefficient maps through a discrete wavelet transformation to obtain a sparse representation in the wavelet space. Subsequently, we assign to the wavelet coefficients a prior that is a mixture of a point mass at zero and a Gaussian white noise. In this mixture prior for the wavelet coefficients, the mixture probabilities are related to the pattern of brain activity across different resolutions. To incorporate this information, we assume that the mixture probabilities for wavelet coefficients at the same location and level are common across subjects. Furthermore, we assign for the mixture probabilities a prior that depends on a few hyperparameters. We develop an empirical Bayes methodology to estimate the hyperparameters and, as these hyperparameters are shared by all subjects, we obtain precise estimated values. Then we carry out inference in the wavelet space and obtain smoothed images of the regression coefficients by applying the inverse wavelet transform to the posterior means of the wavelet coefficients. An application to computer simulated synthetic data has shown that, when compared to single-subject analysis, our multi-subject methodology performs better in terms of mean squared error. Finally, we illustrate the utility and flexibility of our multi-subject methodology with an application to an event-related fMRI dataset generated by Postle (2005) through a multi-subject fMRI study of working memory related brain activation.
Assuntos

Texto completo: 1 Coleções: 01-internacional Base de dados: MEDLINE Assunto principal: Encéfalo / Imageamento por Ressonância Magnética / Interpretação de Imagem Assistida por Computador / Modelos Neurológicos / Modelos Teóricos Tipo de estudo: Prognostic_studies Limite: Humans Idioma: En Revista: Neuroimage Assunto da revista: DIAGNOSTICO POR IMAGEM Ano de publicação: 2012 Tipo de documento: Article País de afiliação: Estados Unidos País de publicação: Estados Unidos

Texto completo: 1 Coleções: 01-internacional Base de dados: MEDLINE Assunto principal: Encéfalo / Imageamento por Ressonância Magnética / Interpretação de Imagem Assistida por Computador / Modelos Neurológicos / Modelos Teóricos Tipo de estudo: Prognostic_studies Limite: Humans Idioma: En Revista: Neuroimage Assunto da revista: DIAGNOSTICO POR IMAGEM Ano de publicação: 2012 Tipo de documento: Article País de afiliação: Estados Unidos País de publicação: Estados Unidos