1,25(OH)(2)vitamin D(3) enhances myogenic differentiation by modulating the expression of key angiogenic growth factors and angiogenic inhibitors in C(2)C(12) skeletal muscle cells.
J Steroid Biochem Mol Biol
; 133: 1-11, 2013 Jan.
Article
em En
| MEDLINE
| ID: mdl-22982629
Vitamin D is mostly recognized for its regulation of calcium homeostasis in relation to the intestine, kidney, and bone. Although clinical studies have linked vitamin D with increased muscle function and strength, little is known of its underlying molecular mechanism. We recently demonstrated that 1,25-D3 exerts a direct pro-myogenic effect on skeletal muscle cells; this has provoked our investigation of 1,25-D's effect on angiogenesis, a vital process for new capillary development and tissue repair. In this study, we examined the mechanism by which 1,25-D3 modulates key angiogenic growth factors and angiogenic inhibitors. C(2)C(12) myoblasts were incubated with 100 nM 1,25-D3 or placebo for 1, 4 and 10 days. At the end of the respective incubation time, total RNA was isolated for PCR arrays and for qRT-PCR. Total proteins were isolated for Western blots and proteome profiler arrays. The addition of 1,25-D3 to C(2)C(12) myoblasts increased VEGFa and FGF-1: two pro-angiogenic growth factors that promote neo-vascularization and tissue regeneration, and decreased FGF-2 and TIMP-3: two myogenic and/or angiogenic inhibitors. Our previous study demonstrated that 1,25-D3 altered IGF-I/II expression, consistent with the observed changes in VEGFa and FGF-2 expression. These results extend our previous findings and demonstrate the modulation of angiogenesis which may be an additional mechanism by which 1,25-D3 promotes myogenesis. This study supports the mechanistic rationale for assessing the administration of vitamin D and/or vitamin D analogs to treat select muscle disorders and may also provide an alternative solution for therapies that directly manipulate VEGF and FGF's to promote angiogenesis.
Texto completo:
1
Coleções:
01-internacional
Base de dados:
MEDLINE
Assunto principal:
Calcitriol
/
Fibras Musculares Esqueléticas
/
Neovascularização Fisiológica
/
Desenvolvimento Muscular
Limite:
Animals
Idioma:
En
Revista:
J Steroid Biochem Mol Biol
Assunto da revista:
BIOLOGIA MOLECULAR
/
BIOQUIMICA
Ano de publicação:
2013
Tipo de documento:
Article
País de afiliação:
Estados Unidos
País de publicação:
Reino Unido