Your browser doesn't support javascript.
loading
A biomechanical model of anther opening reveals the roles of dehydration and secondary thickening.
Nelson, M R; Band, L R; Dyson, R J; Lessinnes, T; Wells, D M; Yang, C; Everitt, N M; Jensen, O E; Wilson, Z A.
Afiliação
  • Nelson MR; School of Mathematical Sciences, University of Nottingham, Nottingham, NG7 2RD, UK.
  • Band LR; Centre for Plant Integrative Biology, School of Biosciences, University of Nottingham, Sutton Bonington, Nottingham, LE12 5RD, UK.
  • Dyson RJ; School of Mathematics, University of Birmingham, Birmingham, B15 2TT, UK.
  • Lessinnes T; Mathematical Institute, University of Oxford, 24-29 St Giles', Oxford, OX1 3LB, UK.
  • Wells DM; Centre for Plant Integrative Biology, School of Biosciences, University of Nottingham, Sutton Bonington, Nottingham, LE12 5RD, UK.
  • Yang C; Centre for Plant Integrative Biology, School of Biosciences, University of Nottingham, Sutton Bonington, Nottingham, LE12 5RD, UK.
  • Everitt NM; Centre for Plant Integrative Biology, School of Biosciences, University of Nottingham, Sutton Bonington, Nottingham, LE12 5RD, UK.
  • Jensen OE; Faculty of Engineering, University of Nottingham, Nottingham, NG7 2RD, UK.
  • Wilson ZA; Centre for Plant Integrative Biology, School of Biosciences, University of Nottingham, Sutton Bonington, Nottingham, LE12 5RD, UK.
New Phytol ; 196(4): 1030-1037, 2012 Dec.
Article em En | MEDLINE | ID: mdl-22998410
ABSTRACT
Understanding the processes that underlie pollen release is a prime target for controlling fertility to enable selective breeding and the efficient production of hybrid crops. Pollen release requires anther opening, which involves changes in the biomechanical properties of the anther wall. In this research, we develop and use a mathematical model to understand how these biomechanical processes lead to anther opening. Our mathematical model describing the biomechanics of anther opening incorporates the bilayer structure of the mature anther wall, which comprises the outer epidermal cell layer, whose turgor pressure is related to its hydration, and the endothecial layer, whose walls contain helical secondary thickening, which resists stretching and bending. The model describes how epidermal dehydration, in association with the thickened endothecial layer, creates forces within the anther wall causing it to bend outwards, resulting in anther opening and pollen release. The model demonstrates that epidermal dehydration can drive anther opening, and suggests why endothecial secondary thickening is essential for this process (explaining the phenotypes presented in the myb26 and nst1nst2 mutants). The research hypothesizes and demonstrates a biomechanical mechanism for anther opening, which appears to be conserved in many other biological situations where tissue movement occurs.
Assuntos

Texto completo: 1 Coleções: 01-internacional Base de dados: MEDLINE Assunto principal: Arabidopsis / Lilium / Flores / Modelos Biológicos / Modelos Teóricos Tipo de estudo: Prognostic_studies Idioma: En Revista: New Phytol Assunto da revista: BOTANICA Ano de publicação: 2012 Tipo de documento: Article País de afiliação: Reino Unido

Texto completo: 1 Coleções: 01-internacional Base de dados: MEDLINE Assunto principal: Arabidopsis / Lilium / Flores / Modelos Biológicos / Modelos Teóricos Tipo de estudo: Prognostic_studies Idioma: En Revista: New Phytol Assunto da revista: BOTANICA Ano de publicação: 2012 Tipo de documento: Article País de afiliação: Reino Unido