Your browser doesn't support javascript.
loading
HIC1 modulates prostate cancer progression by epigenetic modification.
Zheng, Jianghua; Wang, Jinglong; Sun, Xueqing; Hao, Mingang; Ding, Tao; Xiong, Dan; Wang, Xiumin; Zhu, Yu; Xiao, Gang; Cheng, Guangcun; Zhao, Meizhong; Zhang, Jian; Wang, Jianhua.
Afiliação
  • Zheng J; Department of Biochemistry and Molecular Cell Biology, Shanghai Jiao Tong University School of Medicine, China.
Clin Cancer Res ; 19(6): 1400-10, 2013 Mar 15.
Article em En | MEDLINE | ID: mdl-23340301
PURPOSE: Prostate cancer is the second leading cause of cancer deaths among men in Western counties, which has also occurred in Chinese male with markedly increasing incidence in recent years. Although the mechanism underlying its progression still remains unclear, epigenetic modifications are important ethological parameters. The purpose of this study is to determine the methylation status and function of hypermethylatioted in cancer 1 (HIC1) in prostate cancer progression. EXPERIMENTAL DESIGN: The methylation status of HIC1 promoter was assayed in cell lines, tissues, and plasma of patients with prostate cancer by using methylation-specific PCR and bisulfate sequencing PCR. The ability of HIC1 to regulate proliferation, migration, and invasion was assessed by MTT, scratch-healing assay, and reconstituted extracellular matrices in porous culture chambers. Tumorigenesis, metastases, and bone destruction were analyzed in mice bearing prostate cancer cells restoring HIC1 by using Xenogen IVIS with radiographic system and small-animal positron emission tomography computed tomographic images. Microarrays were searched for genes that had correlated expression with HIC1 mRNA. Reporter gene assays were used to determine whether HIC1 affected the expression of CXCR7, and chromatin immunoprecipitation was used to determine whether HIC1 bound to CXCR7 promoters. All P values were determined using 2-sided tests. RESULTS: The methylation status of 11 CpG sites within HIC1 promoter was abundantly methylated in cell lines, tissues, and plasma of patients with prostate cancer compared with those of respective normal controls. Restoring HIC1 expression in prostate cancer cells markedly inhibited proliferation, migration, and invasion and induced the apoptosis in these cells. Moreover, mice bearing prostate cancer-restoring HIC1 cells had a marked effect on reducing tumor growth, multiple tissue metastases, and bone destruction. Notably, we also identified that the chemokine receptor CXCR7 is a direct downstream target gene of HIC1. Finally, we showed that CXCR7 promoter in prostate cancer cells is negatively regulated by HIC1, which may be responsible for prostate cancer progression. CONCLUSIONS: Our data show for the first time that hypermethylation of HIC1 promoter results in loss of its repressive function, responsible for prostate cancer progression and invasion. These findings suggest that therapies targeting epigenetic events regulating HIC1 expression may provide a more effective strategy for prostate cancer treatment.
Assuntos

Texto completo: 1 Coleções: 01-internacional Base de dados: MEDLINE Assunto principal: Neoplasias da Próstata / Metilação de DNA / Epigênese Genética / Fatores de Transcrição Kruppel-Like Tipo de estudo: Prognostic_studies Limite: Animals / Humans / Male Idioma: En Revista: Clin Cancer Res Assunto da revista: NEOPLASIAS Ano de publicação: 2013 Tipo de documento: Article País de afiliação: China País de publicação: Estados Unidos

Texto completo: 1 Coleções: 01-internacional Base de dados: MEDLINE Assunto principal: Neoplasias da Próstata / Metilação de DNA / Epigênese Genética / Fatores de Transcrição Kruppel-Like Tipo de estudo: Prognostic_studies Limite: Animals / Humans / Male Idioma: En Revista: Clin Cancer Res Assunto da revista: NEOPLASIAS Ano de publicação: 2013 Tipo de documento: Article País de afiliação: China País de publicação: Estados Unidos