Your browser doesn't support javascript.
loading
Modulation of cell adhesion and detachment on thermo-responsive polymeric surfaces through the observation of surface dynamics.
Kumashiro, Yoshikazu; Fukumori, Kazuhiro; Takahashi, Hironobu; Nakayama, Masamichi; Akiyama, Yoshikatsu; Yamato, Masayuki; Okano, Teruo.
Afiliação
  • Kumashiro Y; Institute of Advanced Biomedical Engineering and Science, Tokyo Women's Medical University (TWIns), Tokyo 162-8666, Japan.
Colloids Surf B Biointerfaces ; 106: 198-207, 2013 Jun 01.
Article em En | MEDLINE | ID: mdl-23434713
ABSTRACT
Various thermo-responsive polymeric surfaces were evaluated in terms of cell adhesion/detachment and surface analysis. Three kinds of thermo-responsive poly(N-isopropylacrylamide) (PIPAAm) surfaces were prepared by an electron beam irradiation (PIPAAm-EB), a reversible addition fragmentation polymerization (PIPAAm-RAFT), and a redox polymerization (PIPAAm-Redox). Although cell adhesion and detachment on surfaces of PIPAAm-EB and PIPAAm-RAFT were able to be modulated by altering their surface characters with changing the amounts of polymers, the adhesion and detachment were hardly controlled on PIPAAm-Redox surfaces, even though the amounts of polymers on the surface were able to be modulated. Atomic force microscopy (AFM) probed the interactions between AFM tip and the polymeric surface for further investigating a different conformation of polymeric surface. The modification of AFM tip surface coated with octadecyltrichlorosilane was found to change the interaction between the thermo-responsive surface and the tip. Adhesion force analysis clearly showed changes in the hydrophilic/hydrophobic characters of three kinds of thermo-responsive surfaces immediately after a change in temperature. From the kinetics study of AFM, PIPAAm-EB and PIPAAm-RAFT surfaces became hydrophilic less than 30 min after temperature decrease, but PIPAAm-Redox surfaces required 120 min to become hydrophilic after temperature reduction. These results indicated that a faster conformational change triggered cell detachment and a slow conformation change hardly affected cell detachment. Therefore, polymeric conformation on solid substrate was an important factor for modulating cell adhesion and detachment.
Assuntos

Texto completo: 1 Coleções: 01-internacional Base de dados: MEDLINE Assunto principal: Polímeros / Adesão Celular Idioma: En Revista: Colloids Surf B Biointerfaces Assunto da revista: QUIMICA Ano de publicação: 2013 Tipo de documento: Article País de afiliação: Japão

Texto completo: 1 Coleções: 01-internacional Base de dados: MEDLINE Assunto principal: Polímeros / Adesão Celular Idioma: En Revista: Colloids Surf B Biointerfaces Assunto da revista: QUIMICA Ano de publicação: 2013 Tipo de documento: Article País de afiliação: Japão