Dispersive shock wave interactions and asymptotics.
Phys Rev E Stat Nonlin Soft Matter Phys
; 87(2): 022906, 2013 Feb.
Article
em En
| MEDLINE
| ID: mdl-23496590
Dispersive shock waves (DSWs) are physically important phenomena that occur in systems dominated by weak dispersion and weak nonlinearity. The Korteweg-de Vries (KdV) equation is the universal model for systems with weak dispersion and weak, quadratic nonlinearity. Here we show that the long-time-asymptotic solution of the KdV equation for general, steplike data is a single-phase DSW; this DSW is the "largest" possible DSW based on the boundary data. We find this asymptotic solution using the inverse scattering transform and matched-asymptotic expansions. So while multistep data evolve to have multiphase dynamics at intermediate times, these interacting DSWs eventually merge to form a single-phase DSW at large time.
Buscar no Google
Coleções:
01-internacional
Base de dados:
MEDLINE
Assunto principal:
Dinâmica não Linear
/
Transferência de Energia
/
Modelos Teóricos
Idioma:
En
Revista:
Phys Rev E Stat Nonlin Soft Matter Phys
Assunto da revista:
BIOFISICA
/
FISIOLOGIA
Ano de publicação:
2013
Tipo de documento:
Article
País de afiliação:
Estados Unidos
País de publicação:
Estados Unidos