Your browser doesn't support javascript.
loading
Drug uptake pathways of multidrug transporter AcrB studied by molecular simulations and site-directed mutagenesis experiments.
Yao, Xin-Qiu; Kimura, Nobuhiro; Murakami, Satoshi; Takada, Shoji.
Afiliação
  • Yao XQ; Department of Biophysics, Graduate School of Science, Kyoto University, Kyoto 606-8502, Japan.
J Am Chem Soc ; 135(20): 7474-85, 2013 May 22.
Article em En | MEDLINE | ID: mdl-23627437
ABSTRACT
Multidrug resistance has been a critical issue in current chemotherapy. In Escherichia coli , a major efflux pump responsible for the multidrug resistance contains a transporter AcrB. Crystallographic studies and mutational assays of AcrB provided much of structural and overall functional insights, which led to the functionally rotating mechanism. However, the drug uptake pathways are somewhat controversial because at least two possible pathways, the vestibule and the cleft paths, were suggested. Here, combining molecular simulations and site-directed mutagenesis experiments, we addressed the uptake mechanism finding that the drug uptake pathways can be significantly different depending on the properties of drugs. First, in the computational free energy analysis of drug movements along AcrB tunnels, we found a ligand-dependent drug uptake mechanism. With the same molecular sizes, drugs that are both strongly hydrophobic and lipophilic were preferentially taken in via the vestibule path, while other drugs favored the cleft path. Second, direct simulations realized totally about 3500 events of drug uptake by AcrB for a broad range of drug property. These simulations confirmed the ligand-dependent drug uptake and further suggested that a smaller drug favors the vestibule path, while a larger one is taken in via the cleft path. Moreover, the direct simulations identified an alternative uptake path which is not visible in the crystal structure. Third, site-directed mutagenesis of AcrB in E. coli verified that mutations of residues located along the newly identified path significantly reduced the efflux efficiency, supporting its relevance in in vivo function.
Assuntos

Texto completo: 1 Coleções: 01-internacional Base de dados: MEDLINE Assunto principal: Acriflavina / Modelos Moleculares / Novobiocina / Proteínas de Escherichia coli / Proteínas Associadas à Resistência a Múltiplos Medicamentos / Minociclina Tipo de estudo: Prognostic_studies Idioma: En Revista: J Am Chem Soc Ano de publicação: 2013 Tipo de documento: Article País de afiliação: Japão

Texto completo: 1 Coleções: 01-internacional Base de dados: MEDLINE Assunto principal: Acriflavina / Modelos Moleculares / Novobiocina / Proteínas de Escherichia coli / Proteínas Associadas à Resistência a Múltiplos Medicamentos / Minociclina Tipo de estudo: Prognostic_studies Idioma: En Revista: J Am Chem Soc Ano de publicação: 2013 Tipo de documento: Article País de afiliação: Japão