Mass quantification of nanoparticles by single droplet calibration using inductively coupled plasma mass spectrometry.
Anal Chem
; 85(12): 5875-83, 2013 Jun 18.
Article
em En
| MEDLINE
| ID: mdl-23631627
Utilization of metallic engineered nanoparticles (ENP) is progressing rapidly; therefore, characterization of their most important properties, e.g., size/mass, elemental composition, and number concentration, is inevitable and currently uses a set of different techniques. In this work, a new setup is proposed for the quantitative size and mass determination of ENPs employing a monodisperse microdroplet generator (MDG) with transport efficiencies >95% coupled to an ICPMS. Two different MDG sample introduction configurations (vertical and horizontal) were tested, and their performance characteristics were evaluated. Due to a 5-fold reduced temporal jitter resulting in a shorter measurement time, the horizontal droplet introduction approach was used for the analysis of ENPs. With this setup, the quantification of Au, Ag, and CeO2 nanoparticles of different sizes and polydispersities was achieved. Results are compared to complementary techniques such as transmission electron microscopy (TEM) and asymmetric flow field flow fractionation (AF4), and advantages as well as limitations of this newly proposed technique are discussed.
Texto completo:
1
Coleções:
01-internacional
Base de dados:
MEDLINE
Tipo de estudo:
Prognostic_studies
Idioma:
En
Revista:
Anal Chem
Ano de publicação:
2013
Tipo de documento:
Article
País de afiliação:
Suíça
País de publicação:
Estados Unidos