Morphology evolution of fused silica surface during ion beam figuring of high-slope optical components.
Appl Opt
; 52(16): 3719-25, 2013 Jun 01.
Article
em En
| MEDLINE
| ID: mdl-23736325
Ultra-precision and ultra-smooth surfaces are vitally important for some high performance optical systems. Ion beam figuring (IBF) is a well-established, highly deterministic method for the final precision figuring of extremely high quality optical surfaces, whereas ion sputtering induced smoothing, or roughening for nanoscale surface morphology, strongly depends on the processing conditions. Usually, an improper machining method would arouse the production of nanoscale patterns leading to the coarsening of the optical surface. In this paper, the morphology evolution mechanism on a fused silica surface during IBF of high-slope optical components has been investigated by means of atomic force microscopy. Figuring experiments are implemented on two convex spherical surfaces by using different IBF methods. Both of their surface errors are rapidly reduced to 1.2 nm root mean square (RMS) after removing similar deep material, but their surfaces are characterized with obviously different nanoscale morphologies. The experimental results indicate that the ion incidence angle dominates the microscopic morphology during the IBF process. At near-normal incidence, fused silica achieves an ultra-smooth surface with an RMS roughness value R(q) down to 0.1 nm, whereas nanoscale ripple patterns are observed at a large incidence angle with an R(q) value increasing to more than 0.9 nm. Additionally, the difference of incidence angles on various machined areas would influence the uniformity of surface quality, resulting from the interplay between the smoothing and roughening effects induced by ion sputtering.
Texto completo:
1
Coleções:
01-internacional
Base de dados:
MEDLINE
Idioma:
En
Revista:
Appl Opt
Ano de publicação:
2013
Tipo de documento:
Article
País de afiliação:
China
País de publicação:
Estados Unidos