Controlling tetragonality and crystalline orientation in BaTiO3 nano-layers grown on Si.
Nanotechnology
; 24(28): 285701, 2013 Jul 19.
Article
em En
| MEDLINE
| ID: mdl-23787908
A hybrid growth process was developed in order to epitaxially integrate nano-layers of the multi-functional perovskite BaTiO3 onto Si(001) substrates. In particular, we combined molecular beam epitaxy (MBE) with radio-frequency sputtering. Due to its strong influence on the functional properties, the crystalline structure of the layers was thoroughly investigated throughout our study. MBE-grown seed layers are tetragonal and c-axis oriented up to a thickness of 20 nm. A transition into a-axis films is visible for thicker layers. When the seed layer thickness exceeds 6 nm, subsequently sputtered BaTiO3 films are epitaxial. However, their crystalline structure, their orientation with respect to the substrate, and their morphology are strongly dependent on the deposition and post-deposition thermal budget. Consistently with their crystalline symmetry, thin MBE BaTiO3 films are piezo- and ferroelectric with a spontaneous polarization perpendicular to the surface. Also for thick films, the functional response, as determined via piezo-force microscopy, is in good agreement with the structural properties.
Texto completo:
1
Coleções:
01-internacional
Base de dados:
MEDLINE
Idioma:
En
Revista:
Nanotechnology
Ano de publicação:
2013
Tipo de documento:
Article
País de afiliação:
Suíça
País de publicação:
Reino Unido