Neural network-based classification of anesthesia/awareness using Granger causality features.
Clin EEG Neurosci
; 45(2): 77-88, 2014 Apr.
Article
em En
| MEDLINE
| ID: mdl-23820086
This article investigates the signal processing part of a future system for monitoring awareness during surgery. The system uses features from the patients' electrical brain activity (EEG) to discriminate between "anesthesia" and "awareness." We investigate the use of a neural network classifier and Granger causality (GC) features for this purpose. GC captures anesthetic-induced changes in the causal relationships between pairs of signals from different brain areas. The differences in the pairwise causality estimated from the EEG activity are used as features for subsequent classification between "awake" and "anesthetized" states. EEG data from 31 subjects obtained during surgery and maintenance of anesthesia with propofol, sevoflurane, or desflurane, are classified using a neural network with one layer of hidden units. An average accuracy of 96% is obtained.
Palavras-chave
Texto completo:
1
Coleções:
01-internacional
Base de dados:
MEDLINE
Assunto principal:
Vigília
/
Eletroencefalografia
/
Anestesia
/
Rede Nervosa
Tipo de estudo:
Etiology_studies
Limite:
Adolescent
/
Adult
/
Aged
/
Aged80
/
Female
/
Humans
/
Male
/
Middle aged
Idioma:
En
Revista:
Clin EEG Neurosci
Assunto da revista:
CEREBRO
/
NEUROLOGIA
Ano de publicação:
2014
Tipo de documento:
Article
País de afiliação:
Chipre
País de publicação:
Estados Unidos