Your browser doesn't support javascript.
loading
Nanotoxicity comparison of four amphiphilic polymeric micelles with similar hydrophilic or hydrophobic structure.
Zhao, Bo; Wang, Xue-Qing; Wang, Xiao-You; Zhang, Hua; Dai, Wen-Bing; Wang, Jun; Zhong, Zhen-Lin; Wu, Hou-Nan; Zhang, Qiang.
Afiliação
  • Zhao B; State Key Laboratory of Natural and Biomimetic Drugs, School of Pharmaceutical Sciences, Peking University, Beijing 100191, China. wangxq@bjmu.edu.cn.
Part Fibre Toxicol ; 10: 47, 2013 Oct 03.
Article em En | MEDLINE | ID: mdl-24088372
ABSTRACT

BACKGROUND:

Nanocarriers represent an attractive means of drug delivery, but their biosafety must be established before their use in clinical research.

OBJECTIVES:

Four kinds of amphiphilic polymeric (PEG-PG-PCL, PEEP-PCL, PEG-PCL and PEG-DSPE) micelles with similar hydrophilic or hydrophobic structure were prepared and their in vitro and in vivo safety were evaluated and compared.

METHODS:

In vitro nanotoxicity evaluations included assessments of cell morphology, cell volume, inflammatory effects, cytotoxicity, apoptosis and membrane fluidity. An umbilical vein cell line (Eahy.926) and a kind of macrophages (J774.A1) were used as cell models considering that intravenous route is dominant for micelle delivery systems. In vivo analyses included complete blood count, lymphocyte subset analysis, detection of plasma inflammatory factors and histological observations of major organs after intravenous administration to KM mice.

RESULTS:

All the micelles enhanced inflammatory molecules in J774.A1 cells, likely resulting from the increased ROS levels. PEG-PG-PCL and PEEP-PCL micelles were found to increase the J774.A1 cell volume. This likely correlated with the size of PEG-PG-PCL micelles and the polyphosphoester structure in PEEP-PCL. PEG-DSPE micelles inhibited the growth of Eahy.926 cells via inducing apoptosis. This might relate to the structure of DSPE, which is a type of phospholipid and has good affinity with cell membrane. No evidence was found for cell membrane changes after treatment with these micelles for 24 h. In the in vivo study, during 8 days of 4 time injection, each of the four nanocarriers altered the hematic phase differently without changes in inflammatory factors or pathological changes in target organs.

CONCLUSIONS:

These results demonstrate that the micelles investigated exhibit diverse nanotoxicity correlated with their structures, their biosafety is different in different cell model, and there is no in vitro and in vivo correlation found. We believe that this study will certainly provide more scientific understandings on the nanotoxicity of amphiphilic polymeric micelles.
Assuntos

Texto completo: 1 Coleções: 01-internacional Base de dados: MEDLINE Assunto principal: Poliésteres / Polietilenoglicóis / Tensoativos / Portadores de Fármacos / Nanopartículas Tipo de estudo: Prognostic_studies Limite: Animals / Humans / Male Idioma: En Revista: Part Fibre Toxicol Assunto da revista: TOXICOLOGIA Ano de publicação: 2013 Tipo de documento: Article País de afiliação: China

Texto completo: 1 Coleções: 01-internacional Base de dados: MEDLINE Assunto principal: Poliésteres / Polietilenoglicóis / Tensoativos / Portadores de Fármacos / Nanopartículas Tipo de estudo: Prognostic_studies Limite: Animals / Humans / Male Idioma: En Revista: Part Fibre Toxicol Assunto da revista: TOXICOLOGIA Ano de publicação: 2013 Tipo de documento: Article País de afiliação: China