Your browser doesn't support javascript.
loading
Auto-adaptive robot-aided therapy using machine learning techniques.
Badesa, Francisco J; Morales, Ricardo; Garcia-Aracil, Nicolas; Sabater, J M; Casals, Alicia; Zollo, Loredana.
Afiliação
  • Badesa FJ; Virtual Reality and Robotics Lab, Biomedical Neuroengineering Universidad Miguel Hernandez de Elche, 03202 Elche, Alicante, Spain(1). Electronic address: fbadesa@umh.es.
  • Morales R; Virtual Reality and Robotics Lab, Biomedical Neuroengineering Universidad Miguel Hernandez de Elche, 03202 Elche, Alicante, Spain(1). Electronic address: rmorales@umh.es.
  • Garcia-Aracil N; Virtual Reality and Robotics Lab, Biomedical Neuroengineering Universidad Miguel Hernandez de Elche, 03202 Elche, Alicante, Spain(1). Electronic address: nicolas.garcia@umh.es.
  • Sabater JM; Virtual Reality and Robotics Lab, Biomedical Neuroengineering Universidad Miguel Hernandez de Elche, 03202 Elche, Alicante, Spain(1). Electronic address: j.sabater@umh.es.
  • Casals A; Institute for Bioengineering of Catalonia and Universitat Politecnica de Catalunya, BarcelonaTech, Spain(2). Electronic address: alicia.casals@upc.edu.
  • Zollo L; Laboratory of Biomedical Robotics and Biomicrosystems, Università Campus Bio-Medico di Roma, 00128 Rome, Italy(3). Electronic address: l.zollo@unicampus.it.
Comput Methods Programs Biomed ; 116(2): 123-30, 2014 Sep.
Article em En | MEDLINE | ID: mdl-24199656
This paper presents an application of a classification method to adaptively and dynamically modify the therapy and real-time displays of a virtual reality system in accordance with the specific state of each patient using his/her physiological reactions. First, a theoretical background about several machine learning techniques for classification is presented. Then, nine machine learning techniques are compared in order to select the best candidate in terms of accuracy. Finally, first experimental results are presented to show that the therapy can be modulated in function of the patient state using machine learning classification techniques.
Assuntos
Palavras-chave

Texto completo: 1 Coleções: 01-internacional Base de dados: MEDLINE Assunto principal: Robótica / Terapia Assistida por Computador / Inteligência Artificial Tipo de estudo: Etiology_studies / Prognostic_studies / Risk_factors_studies Limite: Humans Idioma: En Revista: Comput Methods Programs Biomed Assunto da revista: INFORMATICA MEDICA Ano de publicação: 2014 Tipo de documento: Article País de publicação: Irlanda

Texto completo: 1 Coleções: 01-internacional Base de dados: MEDLINE Assunto principal: Robótica / Terapia Assistida por Computador / Inteligência Artificial Tipo de estudo: Etiology_studies / Prognostic_studies / Risk_factors_studies Limite: Humans Idioma: En Revista: Comput Methods Programs Biomed Assunto da revista: INFORMATICA MEDICA Ano de publicação: 2014 Tipo de documento: Article País de publicação: Irlanda