Your browser doesn't support javascript.
loading
Poly(amido-amine)-based hydrogels with tailored mechanical properties and degradation rates for tissue engineering.
Martello, Federico; Tocchio, Alessandro; Tamplenizza, Margherita; Gerges, Irini; Pistis, Valentina; Recenti, Rossella; Bortolin, Monica; Del Fabbro, Massimo; Argentiere, Simona; Milani, Paolo; Lenardi, Cristina.
Afiliação
  • Martello F; Fondazione Filarete, Viale Ortles 22/4, 20139 Milano, Italy. Electronic address: federico.martello@fondazionefilarete.com.
  • Tocchio A; SEMM, European School of Molecular Medicine, Campus IFOM-IEO, Via Adamello 16, 20139 Milano, Italy.
  • Tamplenizza M; Fondazione Filarete, Viale Ortles 22/4, 20139 Milano, Italy.
  • Gerges I; Fondazione Filarete, Viale Ortles 22/4, 20139 Milano, Italy.
  • Pistis V; Fondazione Filarete, Viale Ortles 22/4, 20139 Milano, Italy.
  • Recenti R; Fondazione Filarete, Viale Ortles 22/4, 20139 Milano, Italy.
  • Bortolin M; Dipartimento di Scienze Biomediche, Chirurgiche ed Odontoiatriche Università degli Studi di Milano, Via R. Galeazzi 4, 20161 Milano, Italy.
  • Del Fabbro M; Dipartimento di Scienze Biomediche, Chirurgiche ed Odontoiatriche Università degli Studi di Milano, Via R. Galeazzi 4, 20161 Milano, Italy.
  • Argentiere S; Fondazione Filarete, Viale Ortles 22/4, 20139 Milano, Italy.
  • Milani P; Fondazione Filarete, Viale Ortles 22/4, 20139 Milano, Italy; CIMaINa, Dipartimento di Fisica, Università degli Studi di Milano, Via Celoria 16, 20133 Milano, Italy.
  • Lenardi C; Fondazione Filarete, Viale Ortles 22/4, 20139 Milano, Italy; CIMaINa, Dipartimento di Fisica, Università degli Studi di Milano, Via Celoria 16, 20133 Milano, Italy.
Acta Biomater ; 10(3): 1206-15, 2014 Mar.
Article em En | MEDLINE | ID: mdl-24361426
ABSTRACT
Poly(amido-amine) (PAA) hydrogels containing the 2,2-bisacrylamidoacetic acid-4-amminobutyl guanidine monomeric unit have a known ability to enhance cellular adhesion by interacting with the arginin-glycin-aspartic acid (RGD)-binding αVß3 integrin, expressed by a wide number of cell types. Scientific interest in this class of materials has traditionally been hampered by their poor mechanical properties and restricted range of degradation rate. Here we present the design of novel biocompatible, RGD-mimic PAA-based hydrogels with wide and tunable degradation rates as well as improved mechanical and biological properties for biomedical applications. This is achieved by radical polymerization of acrylamide-terminated PAA oligomers in both the presence and absence of 2-hydroxyethylmethacrylate. The degradation rate is found to be precisely tunable by adjusting the PAA oligomer molecular weight and acrylic co-monomer concentration in the starting reaction mixture. Cell adhesion and proliferation tests on Madin-Darby canine kidney epithelial cells show that PAA-based hydrogels have the capacity to promote cell adhesion up to 200% compared to the control. Mechanical tests show higher compressive strength of acrylic chain containing hydrogels compared to traditional PAA hydrogels.
Assuntos
Palavras-chave

Texto completo: 1 Coleções: 01-internacional Base de dados: MEDLINE Assunto principal: Poliaminas / Hidrogéis / Engenharia Tecidual / Fenômenos Mecânicos Limite: Animals Idioma: En Revista: Acta Biomater Ano de publicação: 2014 Tipo de documento: Article

Texto completo: 1 Coleções: 01-internacional Base de dados: MEDLINE Assunto principal: Poliaminas / Hidrogéis / Engenharia Tecidual / Fenômenos Mecânicos Limite: Animals Idioma: En Revista: Acta Biomater Ano de publicação: 2014 Tipo de documento: Article