Your browser doesn't support javascript.
loading
Entry of cell-penetrating peptide transportan 10 into a single vesicle by translocating across lipid membrane and its induced pores.
Islam, Md Zahidul; Ariyama, Hirotaka; Alam, Jahangir Md; Yamazaki, Masahito.
Afiliação
  • Islam MZ; Integrated Bioscience Section, Graduate School of Science and Technology, ‡Nanomaterials Research Division, Research Institute of Electronics, and §Department of Physics, Graduate School of Science, Shizuoka University , Shizuoka 422-8529, Japan.
Biochemistry ; 53(2): 386-96, 2014 Jan 21.
Article em En | MEDLINE | ID: mdl-24397335
The cell-penetrating peptide, transportan 10 (TP10), can translocate across the plasma membrane of living cells and thus can be used for the intracellular delivery of biological cargo such as proteins. However, the mechanisms underlying its translocation and the delivery of large cargo remain unclear. In this report we investigated the entry of TP10 into a single giant unilamellar vesicle (GUV) and the TP10-induced leakage of fluorescent probes using the single GUV method. GUVs of 20% dioleoylphosphatidylglycerol (DOPG)/80% dioleoylphosphatidylcholine (DOPC) were prepared, and they contained a water-soluble fluorescent dye, Alexa Fluor 647 hydrazide (AF647), and smaller vesicles composed of 20% DOPG/80% DOPC. The interaction of carboxyfluorescein (CF)-labeled TP10 (CF-TP10) with these loaded GUVs was investigated using confocal microscopy. The fluorescence intensity of the GUV membrane increased with time to a saturated value, then the fluorescence intensity due to the membranes of the smaller vesicles inside the GUV increased prior to leakage of AF647. This result indicates that CF-TP10 entered the GUV from the outside by translocating across the lipid membrane before CF-TP10-induced pore formation. The rate constant of TP10-induced pore formation in lipid membranes increased with an increase in TP10 concentration. Large molecules such as Texas Red Dextran 40,000, and vesicles with a diameter of 1-2 µm, permeated through the TP10-induced pores or local rupture in the lipid membrane. These results provide the first direct experimental evidence that TP10 can deliver large cargo through lipid membranes, without the need for special transport mechanisms such as those found in cells.
Assuntos

Texto completo: 1 Coleções: 01-internacional Base de dados: MEDLINE Assunto principal: Proteínas Recombinantes de Fusão / Lipossomas Unilamelares / Peptídeos Penetradores de Células Idioma: En Revista: Biochemistry Ano de publicação: 2014 Tipo de documento: Article País de afiliação: Japão País de publicação: Estados Unidos

Texto completo: 1 Coleções: 01-internacional Base de dados: MEDLINE Assunto principal: Proteínas Recombinantes de Fusão / Lipossomas Unilamelares / Peptídeos Penetradores de Células Idioma: En Revista: Biochemistry Ano de publicação: 2014 Tipo de documento: Article País de afiliação: Japão País de publicação: Estados Unidos