Your browser doesn't support javascript.
loading
Proteomics reveal energy metabolism and mitogen-activated protein kinase signal transduction perturbation in human Borna disease virus Hu-H1-infected oligodendroglial cells.
Liu, X; Yang, Y; Zhao, M; Bode, L; Zhang, L; Pan, J; Lv, L; Zhan, Y; Liu, S; Zhang, L; Wang, X; Huang, R; Zhou, J; Xie, P.
Afiliação
  • Liu X; Department of Neurology, The First Affiliated Hospital of Chongqing Medical University, Chongqing, China; Chongqing Key Laboratory of Neurobiology, Chongqing Medical University, Chongqing, China; Institute of Neuroscience, Chongqing Medical University, Chongqing, China.
  • Yang Y; Department of Neurology, The First Affiliated Hospital of Chongqing Medical University, Chongqing, China; Chongqing Key Laboratory of Neurobiology, Chongqing Medical University, Chongqing, China; Institute of Neuroscience, Chongqing Medical University, Chongqing, China.
  • Zhao M; Chongqing Key Laboratory of Neurobiology, Chongqing Medical University, Chongqing, China; Institute of Neuroscience, Chongqing Medical University, Chongqing, China.
  • Bode L; Bornavirus Research Group affiliated to the Free University of Berlin, Berlin, Germany.
  • Zhang L; Chongqing Key Laboratory of Neurobiology, Chongqing Medical University, Chongqing, China; Institute of Neuroscience, Chongqing Medical University, Chongqing, China.
  • Pan J; Chongqing Key Laboratory of Neurobiology, Chongqing Medical University, Chongqing, China; Institute of Neuroscience, Chongqing Medical University, Chongqing, China.
  • Lv L; Chongqing Key Laboratory of Neurobiology, Chongqing Medical University, Chongqing, China; Institute of Neuroscience, Chongqing Medical University, Chongqing, China.
  • Zhan Y; Chongqing Key Laboratory of Neurobiology, Chongqing Medical University, Chongqing, China; Institute of Neuroscience, Chongqing Medical University, Chongqing, China.
  • Liu S; Chongqing Key Laboratory of Neurobiology, Chongqing Medical University, Chongqing, China; Institute of Neuroscience, Chongqing Medical University, Chongqing, China.
  • Zhang L; Department of Neurology, The First Affiliated Hospital of Chongqing Medical University, Chongqing, China; Chongqing Key Laboratory of Neurobiology, Chongqing Medical University, Chongqing, China; Institute of Neuroscience, Chongqing Medical University, Chongqing, China.
  • Wang X; Chongqing Key Laboratory of Neurobiology, Chongqing Medical University, Chongqing, China; Institute of Neuroscience, Chongqing Medical University, Chongqing, China.
  • Huang R; Chongqing Key Laboratory of Neurobiology, Chongqing Medical University, Chongqing, China; Institute of Neuroscience, Chongqing Medical University, Chongqing, China; Department of Rehabilitation, The Second Affiliated Hospital of Chongqing Medical University, Chongqing, China.
  • Zhou J; Chongqing Key Laboratory of Neurobiology, Chongqing Medical University, Chongqing, China; Institute of Neuroscience, Chongqing Medical University, Chongqing, China.
  • Xie P; Department of Neurology, The First Affiliated Hospital of Chongqing Medical University, Chongqing, China; Chongqing Key Laboratory of Neurobiology, Chongqing Medical University, Chongqing, China; Institute of Neuroscience, Chongqing Medical University, Chongqing, China. Electronic address: xiepeng@c
Neuroscience ; 268: 284-96, 2014 May 30.
Article em En | MEDLINE | ID: mdl-24637096
ABSTRACT
Borna disease virus (BDV) is a neurotropic, non-cytolytic RNA virus which replicates in the cell nucleus targeting mainly hippocampal neurons, but also astroglial and oligodendroglial cells in the brain. BDV is associated with a large spectrum of neuropsychiatric pathologies in animals. Its relationship to human neuropsychiatric illness still remains controversial. We could recently demonstrate that human BDV strain Hu-H1 promoted apoptosis and inhibited cell proliferation in a human oligodendroglial cell line (OL cells) whereas laboratory BDV strain V acted contrariwise. Here, differential protein expression between BDV Hu-H1-infected OL cells and non-infected OL cells was assessed through a proteomics approach, using two-dimensional electrophoresis followed by matrix-assisted laser desorption ionization-time of flight tandem mass spectrometry. A total of 63 differential host proteins were identified in BDV Hu-H1-infected OL cells compared to non-infected OL cells. We found that most changes referred to alterations related to the pentose phosphate pathway, glyoxylate and dicarboxylate metabolism, the tricarboxylic acid (TCA) cycle, and glycolysis /gluconeogenesis. By manual querying, two differential proteins were found to be associated with mitogen-activated protein kinase (MAPK) signal transduction. Five key signaling proteins of this pathway (i.e., p-Raf, p-MEK, p-ERK1/2, p-RSK, and p-MSK) were selected for Western blotting validation. p-ERK1/2 and p-RSK were found to be significantly up-regulated, and p-MSK was found to be significantly down-regulated in BDV Hu-H1-infected OL cells compared to non-infected OL cell. Although BDV Hu-H1 constitutively activated the ERK-RSK pathway, host cell proliferation and nuclear translocation of activated pERK in BDV Hu-H1-infected OL cells were impaired. These findings indicate that BDV Hu-H1 infection of human oligodendroglial cells significantly perturbs host energy metabolism, activates the downstream ERK-RSK complex of the Raf/MEK/ERK signaling cascade, and disturbs host cell proliferation possibly through impaired nuclear translocation of pERK, a finding which warrants further research.
Assuntos
Palavras-chave

Texto completo: 1 Coleções: 01-internacional Base de dados: MEDLINE Assunto principal: Vírus da Doença de Borna / Oligodendroglia / Sistema de Sinalização das MAP Quinases / Metabolismo Energético Tipo de estudo: Prognostic_studies Limite: Humans Idioma: En Revista: Neuroscience Ano de publicação: 2014 Tipo de documento: Article País de afiliação: China

Texto completo: 1 Coleções: 01-internacional Base de dados: MEDLINE Assunto principal: Vírus da Doença de Borna / Oligodendroglia / Sistema de Sinalização das MAP Quinases / Metabolismo Energético Tipo de estudo: Prognostic_studies Limite: Humans Idioma: En Revista: Neuroscience Ano de publicação: 2014 Tipo de documento: Article País de afiliação: China