Magnetic particles confined in a modulated channel: structural transitions tunable by tilting a magnetic field.
Phys Rev E Stat Nonlin Soft Matter Phys
; 89(3): 032309, 2014 Mar.
Article
em En
| MEDLINE
| ID: mdl-24730844
The ground state of colloidal magnetic particles in a modulated channel are investigated as a function of the tilt angle of an applied magnetic field. The particles are confined by a parabolic potential in the transversal direction while in the axial direction a periodic substrate potential is present. By using Monte Carlo simulations, we construct a phase diagram for the different crystal structures as a function of the magnetic field orientation, strength of the modulated potential, and the commensurability factor of the system. Interestingly, we found first- and second-order phase transitions between different crystal structures, which can be manipulated by the orientation of the external magnetic field. A reentrant behavior is found between two- and four-chain configurations, with continuous second-order transitions. Novel configurations are found consisting of frozen solitons of defects. By changing the orientation and/or strength of the magnetic field and/or the strength and periodicity of the substrate potential, the system transits through different phases.
Buscar no Google
Coleções:
01-internacional
Base de dados:
MEDLINE
Idioma:
En
Revista:
Phys Rev E Stat Nonlin Soft Matter Phys
Assunto da revista:
BIOFISICA
/
FISIOLOGIA
Ano de publicação:
2014
Tipo de documento:
Article
País de afiliação:
Bélgica
País de publicação:
Estados Unidos