Your browser doesn't support javascript.
loading
Unleashing the quadratic nonlinear optical responses of graphene by confining white-graphene (h-BN) sections in its framework.
Karamanis, Panaghiotis; Otero, Nicolás; Pouchan, Claude.
Afiliação
  • Karamanis P; Equipe de Chimie Théorique, ECP Institut des Sciences Analytiques et de Physico-chimie pour l'Environnement et les Matériaux (IPREM) UMR 5254, Hélioparc Pau Pyrénées 2 avenue du Président Angot, 64053 Pau Cedex 09, France.
J Am Chem Soc ; 136(20): 7464-73, 2014 May 21.
Article em En | MEDLINE | ID: mdl-24779531
ABSTRACT
In an attempt to diversify the options in designing graphene-based systems bearing large second order nonlinear optical (NLO) responses of octupolar and/or dipolar character, the subject of the quadratic NLO properties of hybrid boron nitride (BN) graphene flakes is opened up. State of the art ab initio and density functional theory methods applied on a toolbox of book-text octupolar and arbitrary dipolar planar hybrid h-BN-graphene nanosized systems reveal that by confining finite h-BN sections in the internal network of graphene, the capacity of the π-electron network of graphene species in delivering giant second order NLO responses could be fully exploited. Configuration interaction (CIS) and time-dependent density functional (TD) computations, within the sum-overstate (SOS) perturbational approach, expose that the prevailing (hyper)polarization mechanism, lying under the sizable computed octupolar hyperpolarizabilities, is fueled by alternating positive and negative atomic charges located in the internal part of the hybrid flakes, and more precisely at the BN/graphene intersections. This type of charge transfer mechanism distinguishes, in fact, the elemental graphene dipoles/octupoles we report here from other conventional NLO dipoles or octupoles. More interestingly, it is shown that by controlling the shape, size, and covering area of the h-BN domain (or domains), one can effectively regulate "à volonté" both the magnitudes and types of the second order NLO responses switching from dipolar to octupolar and vice versa. Especially in the context of the latter class of NLO properties, this communication brings into surface novel, graphene-based, octupolar planar or quasiplanar motifs. The take home message of this communication is summarized as follows When the right BN segment is incorporated in the right section of the right graphene flake, systems of giant quadratic NLO octupolar and/or dipolar responses may emerge.

Texto completo: 1 Coleções: 01-internacional Base de dados: MEDLINE Idioma: En Revista: J Am Chem Soc Ano de publicação: 2014 Tipo de documento: Article País de afiliação: França

Texto completo: 1 Coleções: 01-internacional Base de dados: MEDLINE Idioma: En Revista: J Am Chem Soc Ano de publicação: 2014 Tipo de documento: Article País de afiliação: França