Your browser doesn't support javascript.
loading
Host species restriction of Middle East respiratory syndrome coronavirus through its receptor, dipeptidyl peptidase 4.
van Doremalen, Neeltje; Miazgowicz, Kerri L; Milne-Price, Shauna; Bushmaker, Trenton; Robertson, Shelly; Scott, Dana; Kinne, Joerg; McLellan, Jason S; Zhu, Jiang; Munster, Vincent J.
Afiliação
  • van Doremalen N; Laboratory of Virology, Division of Intramural Research, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Hamilton, Montana, USA.
  • Miazgowicz KL; Laboratory of Virology, Division of Intramural Research, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Hamilton, Montana, USA.
  • Milne-Price S; Laboratory of Virology, Division of Intramural Research, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Hamilton, Montana, USA.
  • Bushmaker T; Laboratory of Virology, Division of Intramural Research, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Hamilton, Montana, USA.
  • Robertson S; Laboratory of Virology, Division of Intramural Research, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Hamilton, Montana, USA.
  • Scott D; Rocky Mountain Veterinary Branch, Division of Intramural Research, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Hamilton, Montana, USA.
  • Kinne J; Central Veterinary Research Laboratories, Dubai, Dubai, United Arab Emirates.
  • McLellan JS; Department of Biochemistry, Geisel School of Medicine at Dartmouth, Hanover, New Hampshire, USA.
  • Zhu J; Department of Immunology and Microbial Science and Department of Integrative Structural and Computational Biology, The Scripps Research Institute, La Jolla, California, USA.
  • Munster VJ; Laboratory of Virology, Division of Intramural Research, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Hamilton, Montana, USA vincent.munster@nih.gov.
J Virol ; 88(16): 9220-32, 2014 Aug.
Article em En | MEDLINE | ID: mdl-24899185
UNLABELLED: Middle East respiratory syndrome coronavirus (MERS-CoV) emerged in 2012. Recently, the MERS-CoV receptor dipeptidyl peptidase 4 (DPP4) was identified and the specific interaction of the receptor-binding domain (RBD) of MERS-CoV spike protein and DPP4 was determined by crystallography. Animal studies identified rhesus macaques but not hamsters, ferrets, or mice to be susceptible for MERS-CoV. Here, we investigated the role of DPP4 in this observed species tropism. Cell lines of human and nonhuman primate origin were permissive of MERS-CoV, whereas hamster, ferret, or mouse cell lines were not, despite the presence of DPP4. Expression of human DPP4 in nonsusceptible BHK and ferret cells enabled MERS-CoV replication, whereas expression of hamster or ferret DPP4 did not. Modeling the binding energies of MERS-CoV spike protein RBD to DPP4 of human (susceptible) or hamster (nonsusceptible) identified five amino acid residues involved in the DPP4-RBD interaction. Expression of hamster DPP4 containing the five human DPP4 amino acids rendered BHK cells susceptible to MERS-CoV, whereas expression of human DPP4 containing the five hamster DPP4 amino acids did not. Using the same approach, the potential of MERS-CoV to utilize the DPP4s of common Middle Eastern livestock was investigated. Modeling of the DPP4 and MERS-CoV RBD interaction predicted the ability of MERS-CoV to bind the DPP4s of camel, goat, cow, and sheep. Expression of the DPP4s of these species on BHK cells supported MERS-CoV replication. This suggests, together with the abundant DPP4 presence in the respiratory tract, that these species might be able to function as a MERS-CoV intermediate reservoir. IMPORTANCE: The ongoing outbreak of Middle East respiratory syndrome coronavirus (MERS-CoV) has caused 701 laboratory-confirmed cases to date, with 249 fatalities. Although bats and dromedary camels have been identified as potential MERS-CoV hosts, the virus has so far not been isolated from any species other than humans. The inability of MERS-CoV to infect commonly used animal models, such as hamster, mice, and ferrets, indicates the presence of a species barrier. We show that the MERS-CoV receptor DPP4 plays a pivotal role in the observed species tropism of MERS-CoV and subsequently identified the amino acids in DPP4 responsible for this restriction. Using a combined modeling and experimental approach, we predict that, based on the ability of MERS-CoV to utilize the DPP4 of common Middle East livestock species, such as camels, goats, sheep, and cows, these form a potential MERS-CoV intermediate host reservoir species.
Assuntos

Texto completo: 1 Coleções: 01-internacional Base de dados: MEDLINE Assunto principal: Receptores Virais / Vírus Sinciciais Respiratórios / Coronavirus / Dipeptidil Peptidase 4 / Especificidade de Hospedeiro Tipo de estudo: Prognostic_studies Limite: Animals / Humans País/Região como assunto: Asia Idioma: En Revista: J Virol Ano de publicação: 2014 Tipo de documento: Article País de afiliação: Estados Unidos País de publicação: Estados Unidos

Texto completo: 1 Coleções: 01-internacional Base de dados: MEDLINE Assunto principal: Receptores Virais / Vírus Sinciciais Respiratórios / Coronavirus / Dipeptidil Peptidase 4 / Especificidade de Hospedeiro Tipo de estudo: Prognostic_studies Limite: Animals / Humans País/Região como assunto: Asia Idioma: En Revista: J Virol Ano de publicação: 2014 Tipo de documento: Article País de afiliação: Estados Unidos País de publicação: Estados Unidos