Your browser doesn't support javascript.
loading
Uniting statistical and individual-based approaches for animal movement modelling.
Latombe, Guillaume; Parrott, Lael; Basille, Mathieu; Fortin, Daniel.
Afiliação
  • Latombe G; School of Biological Sciences, Monash University, Clayton, Victoria, Australia; Département de Géographie, Université de Montréal, Montréal, Québec, Canada.
  • Parrott L; Earth and Environmental Sciences and Biology Units, The University of British Columbia, Kelowna, British Columbia, Canada.
  • Basille M; Chaire de recherche industrielle CRSNG-Université Laval en sylviculture et faune, Département de biologie, Université Laval, Québec, Québec, Canada; Fort Lauderdale Research and Education Center, University of Florida, Fort Lauderdale, Florida, United States of America.
  • Fortin D; Chaire de recherche industrielle CRSNG-Université Laval en sylviculture et faune, Département de biologie, Université Laval, Québec, Québec, Canada.
PLoS One ; 9(6): e99938, 2014.
Article em En | MEDLINE | ID: mdl-24979047
The dynamic nature of their internal states and the environment directly shape animals' spatial behaviours and give rise to emergent properties at broader scales in natural systems. However, integrating these dynamic features into habitat selection studies remains challenging, due to practically impossible field work to access internal states and the inability of current statistical models to produce dynamic outputs. To address these issues, we developed a robust method, which combines statistical and individual-based modelling. Using a statistical technique for forward modelling of the IBM has the advantage of being faster for parameterization than a pure inverse modelling technique and allows for robust selection of parameters. Using GPS locations from caribou monitored in Québec, caribou movements were modelled based on generative mechanisms accounting for dynamic variables at a low level of emergence. These variables were accessed by replicating real individuals' movements in parallel sub-models, and movement parameters were then empirically parameterized using Step Selection Functions. The final IBM model was validated using both k-fold cross-validation and emergent patterns validation and was tested for two different scenarios, with varying hardwood encroachment. Our results highlighted a functional response in habitat selection, which suggests that our method was able to capture the complexity of the natural system, and adequately provided projections on future possible states of the system in response to different management plans. This is especially relevant for testing the long-term impact of scenarios corresponding to environmental configurations that have yet to be observed in real systems.
Assuntos

Texto completo: 1 Coleções: 01-internacional Base de dados: MEDLINE Assunto principal: Modelos Estatísticos / Ecossistema / Locomoção / Modelos Biológicos Tipo de estudo: Prognostic_studies / Risk_factors_studies Limite: Animals Idioma: En Revista: PLoS One Assunto da revista: CIENCIA / MEDICINA Ano de publicação: 2014 Tipo de documento: Article País de afiliação: Canadá País de publicação: Estados Unidos

Texto completo: 1 Coleções: 01-internacional Base de dados: MEDLINE Assunto principal: Modelos Estatísticos / Ecossistema / Locomoção / Modelos Biológicos Tipo de estudo: Prognostic_studies / Risk_factors_studies Limite: Animals Idioma: En Revista: PLoS One Assunto da revista: CIENCIA / MEDICINA Ano de publicação: 2014 Tipo de documento: Article País de afiliação: Canadá País de publicação: Estados Unidos