Your browser doesn't support javascript.
loading
Highly efficient non-rare-earth red emitting phosphor for warm white light-emitting diodes.
Zhu, Haomiao; Lin, Chun Che; Luo, Wenqin; Shu, Situan; Liu, Zhuguang; Liu, Yongsheng; Kong, Jintao; Ma, En; Cao, Yongge; Liu, Ru-Shi; Chen, Xueyuan.
Afiliação
  • Zhu H; Key Laboratory of Optoelectronic Materials Chemistry and Physics, Key Laboratory of Design and Assembly of Functional Nanostructures, Fujian Institute of Research on the Structure of Matter, Chinese Academy of Sciences, Fuzhou, Fujian 350002, China.
  • Lin CC; Department of Chemistry, National Taiwan University, Taipei 106, Taiwan.
  • Luo W; Key Laboratory of Optoelectronic Materials Chemistry and Physics, Key Laboratory of Design and Assembly of Functional Nanostructures, Fujian Institute of Research on the Structure of Matter, Chinese Academy of Sciences, Fuzhou, Fujian 350002, China.
  • Shu S; Key Laboratory of Optoelectronic Materials Chemistry and Physics, Key Laboratory of Design and Assembly of Functional Nanostructures, Fujian Institute of Research on the Structure of Matter, Chinese Academy of Sciences, Fuzhou, Fujian 350002, China.
  • Liu Z; Key Laboratory of Optoelectronic Materials Chemistry and Physics, Key Laboratory of Design and Assembly of Functional Nanostructures, Fujian Institute of Research on the Structure of Matter, Chinese Academy of Sciences, Fuzhou, Fujian 350002, China.
  • Liu Y; Key Laboratory of Optoelectronic Materials Chemistry and Physics, Key Laboratory of Design and Assembly of Functional Nanostructures, Fujian Institute of Research on the Structure of Matter, Chinese Academy of Sciences, Fuzhou, Fujian 350002, China.
  • Kong J; Key Laboratory of Optoelectronic Materials Chemistry and Physics, Key Laboratory of Design and Assembly of Functional Nanostructures, Fujian Institute of Research on the Structure of Matter, Chinese Academy of Sciences, Fuzhou, Fujian 350002, China.
  • Ma E; Key Laboratory of Optoelectronic Materials Chemistry and Physics, Key Laboratory of Design and Assembly of Functional Nanostructures, Fujian Institute of Research on the Structure of Matter, Chinese Academy of Sciences, Fuzhou, Fujian 350002, China.
  • Cao Y; Key Laboratory of Optoelectronic Materials Chemistry and Physics, Key Laboratory of Design and Assembly of Functional Nanostructures, Fujian Institute of Research on the Structure of Matter, Chinese Academy of Sciences, Fuzhou, Fujian 350002, China.
  • Liu RS; Department of Chemistry, National Taiwan University, Taipei 106, Taiwan.
  • Chen X; Key Laboratory of Optoelectronic Materials Chemistry and Physics, Key Laboratory of Design and Assembly of Functional Nanostructures, Fujian Institute of Research on the Structure of Matter, Chinese Academy of Sciences, Fuzhou, Fujian 350002, China.
Nat Commun ; 5: 4312, 2014 Jul 08.
Article em En | MEDLINE | ID: mdl-25002064
ABSTRACT
Mn(4+)-activated fluoride compounds, as an alternative to commercial (oxy)nitride phosphors, are emerging as a new class of non-rare-earth red phosphors for high-efficacy warm white LEDs. Currently, it remains a challenge to synthesize these phosphors with high photoluminescence quantum yields through a convenient chemical route. Herein we propose a general but convenient strategy based on efficient cation exchange reaction, which had been originally regarded only effective in synthesizing nano-sized materials before, for the synthesis of Mn(4+)-activated fluoride microcrystals such as K2TiF6, K2SiF6, NaGdF4 and NaYF4. Particularly we achieve a photoluminescence quantum yield as high as 98% for K2TiF6Mn(4+). By employing it as red phosphor, we fabricate a high-performance white LED with low correlated colour temperature (3,556 K), high-colour-rendering index (Ra=81) and luminous efficacy of 116 lm W(-1). These findings show great promise of K2TiF6Mn(4+) as a commercial red phosphor in warm white LEDs, and open up new avenues for the exploration of novel non-rare-earth red emitting phosphors.

Texto completo: 1 Coleções: 01-internacional Base de dados: MEDLINE Idioma: En Revista: Nat Commun Assunto da revista: BIOLOGIA / CIENCIA Ano de publicação: 2014 Tipo de documento: Article País de afiliação: China

Texto completo: 1 Coleções: 01-internacional Base de dados: MEDLINE Idioma: En Revista: Nat Commun Assunto da revista: BIOLOGIA / CIENCIA Ano de publicação: 2014 Tipo de documento: Article País de afiliação: China
...