Your browser doesn't support javascript.
loading
Blocking phosphatidylcholine utilization in Pseudomonas aeruginosa, via mutagenesis of fatty acid, glycerol and choline degradation pathways, confirms the importance of this nutrient source in vivo.
Sun, Zhenxin; Kang, Yun; Norris, Michael H; Troyer, Ryan M; Son, Mike S; Schweizer, Herbert P; Dow, Steven W; Hoang, Tung T.
Afiliação
  • Sun Z; Department of Microbiology, University of Hawaii at Manoa, Honolulu, Hawaii, United States of America.
  • Kang Y; Department of Microbiology, University of Hawaii at Manoa, Honolulu, Hawaii, United States of America.
  • Norris MH; Department of Molecular Biosciences and Bioengineering, University of Hawaii at Manoa, Honolulu, Hawaii, United States of America.
  • Troyer RM; Department of Microbiology, Immunology, and Pathology, Colorado State University, Fort Collins, Colorado, United States of America.
  • Son MS; Department of Biological Sciences, Plymouth State University, Plymouth, New Hampshire, United States of America.
  • Schweizer HP; Department of Microbiology, Immunology, and Pathology, Colorado State University, Fort Collins, Colorado, United States of America.
  • Dow SW; Department of Microbiology, Immunology, and Pathology, Colorado State University, Fort Collins, Colorado, United States of America.
  • Hoang TT; Department of Microbiology, University of Hawaii at Manoa, Honolulu, Hawaii, United States of America; Department of Molecular Biosciences and Bioengineering, University of Hawaii at Manoa, Honolulu, Hawaii, United States of America.
PLoS One ; 9(7): e103778, 2014.
Article em En | MEDLINE | ID: mdl-25068317
ABSTRACT
Pseudomonas aeruginosa can grow to very high-cell-density (HCD) during infection of the cystic fibrosis (CF) lung. Phosphatidylcholine (PC), the major component of lung surfactant, has been hypothesized to support HCD growth of P. aeruginosa in vivo. The phosphorylcholine headgroup, a glycerol molecule, and two long-chain fatty acids (FAs) are released by enzymatic cleavage of PC by bacterial phospholipase C and lipases. Three different bacterial pathways, the choline, glycerol, and fatty acid degradation pathways, are then involved in the degradation of these PC components. Here, we identified five potential FA degradation (Fad) related fadBA-operons (fadBA1-5, each encoding 3-hydroxyacyl-CoA dehydrogenase and acyl-CoA thiolase). Through mutagenesis and growth analyses, we showed that three (fadBA145) of the five fadBA-operons are dominant in medium-chain and long-chain Fad. The triple fadBA145 mutant also showed reduced ability to degrade PC in vitro. We have previously shown that by partially blocking Fad, via mutagenesis of fadBA5 and fadDs, we could significantly reduce the ability of P. aeruginosa to replicate on FA and PC in vitro, as well as in the mouse lung. However, no studies have assessed the ability of mutants, defective in choline and/or glycerol degradation in conjunction with Fad, to grow on PC or in vivo. Hence, we constructed additional mutants (ΔfadBA145ΔglpD, ΔfadBA145ΔbetAB, and ΔfadBA145ΔbetABΔglpD) significantly defective in the ability to degrade FA, choline, and glycerol and, therefore, PC. The analysis of these mutants in the BALB/c mouse lung infection model showed significant inability to utilize PC in vitro, resulted in decreased replication fitness and competitiveness in vivo compared to the complement strain, although there was little to no variation in typical virulence factor production (e.g., hemolysin, lipase, and protease levels). This further supports the hypothesis that lung surfactant PC serves as an important nutrient for P. aeruginosa during CF lung infection.
Assuntos

Texto completo: 1 Coleções: 01-internacional Base de dados: MEDLINE Assunto principal: Fosfatidilcolinas / Pseudomonas aeruginosa / Colina / Ácidos Graxos / Glicerol Tipo de estudo: Prognostic_studies Limite: Animals Idioma: En Revista: PLoS One Assunto da revista: CIENCIA / MEDICINA Ano de publicação: 2014 Tipo de documento: Article País de afiliação: Estados Unidos

Texto completo: 1 Coleções: 01-internacional Base de dados: MEDLINE Assunto principal: Fosfatidilcolinas / Pseudomonas aeruginosa / Colina / Ácidos Graxos / Glicerol Tipo de estudo: Prognostic_studies Limite: Animals Idioma: En Revista: PLoS One Assunto da revista: CIENCIA / MEDICINA Ano de publicação: 2014 Tipo de documento: Article País de afiliação: Estados Unidos
...