Your browser doesn't support javascript.
loading
Delayed self-regulation and time-dependent chemical drive leads to novel states in epigenetic landscapes.
Mitra, Mithun K; Taylor, Paul R; Hutchison, Chris J; McLeish, T C B; Chakrabarti, Buddhapriya.
Afiliação
  • Mitra MK; Department of Physics, I.I.T. Bombay, Mumbai 400076, India.
  • Taylor PR; Systems Biology Doctoral Training Centre, University of Oxford, Oxford OX1 3QU, UK.
  • Hutchison CJ; School of Biological and Biomedical Sciences, Durham University, Durham DH1 3LE, UK.
  • McLeish TC; Department of Physics and Astronomy, Durham University, Durham DH1 3LE, UK.
  • Chakrabarti B; Department of Mathematical Sciences, Durham University, Durham DH1 3LE, UK The Isaac Newton Institute of Mathematical Sciences, University of Cambridge, Cambridge CB3 0EH, UK buddhapriya.chakrabarti@durham.ac.uk.
J R Soc Interface ; 11(100): 20140706, 2014 Nov 06.
Article em En | MEDLINE | ID: mdl-25165605
ABSTRACT
The epigenetic pathway of a cell as it differentiates from a stem cell state to a mature lineage-committed one has been historically understood in terms of Waddington's landscape, consisting of hills and valleys. The smooth top and valley-strewn bottom of the hill represent their undifferentiated and differentiated states, respectively. Although mathematical ideas rooted in nonlinear dynamics and bifurcation theory have been used to quantify this picture, the importance of time delays arising from multistep chemical reactions or cellular shape transformations have been ignored so far. We argue that this feature is crucial in understanding cell differentiation and explore the role of time delay in a model of a single-gene regulatory circuit. We show that the interplay of time-dependent drive and delay introduces a new regime where the system shows sustained oscillations between the two admissible steady states. We interpret these results in the light of recent perplexing experiments on inducing the pluripotent state in mouse somatic cells. We also comment on how such an oscillatory state can provide a framework for understanding more general feedback circuits in cell development.
Assuntos
Palavras-chave

Texto completo: 1 Coleções: 01-internacional Base de dados: MEDLINE Assunto principal: Relógios Biológicos / Diferenciação Celular / Células-Tronco Pluripotentes / Epigênese Genética / Redes Reguladoras de Genes / Modelos Biológicos Tipo de estudo: Prognostic_studies Limite: Animals Idioma: En Revista: J R Soc Interface Ano de publicação: 2014 Tipo de documento: Article País de afiliação: Índia

Texto completo: 1 Coleções: 01-internacional Base de dados: MEDLINE Assunto principal: Relógios Biológicos / Diferenciação Celular / Células-Tronco Pluripotentes / Epigênese Genética / Redes Reguladoras de Genes / Modelos Biológicos Tipo de estudo: Prognostic_studies Limite: Animals Idioma: En Revista: J R Soc Interface Ano de publicação: 2014 Tipo de documento: Article País de afiliação: Índia