Metal-bosonic insulator-superconductor transition in boron-doped granular diamond.
Phys Rev Lett
; 110(7): 077001, 2013 Feb 15.
Article
em En
| MEDLINE
| ID: mdl-25166395
In a variety of superconductors, mostly in two-dimensional (2D) and one-dimensional (1D) systems, the resistive superconducting transition R(T) demonstrates in many cases an anomalous narrow R(T) peak just preceding the onset of the superconducting state R=0 at T(c). The amplitude of this R(T) peak in 1D and 2D systems ranges from a few up to several hundred percent. In three-dimensional (3D) systems, however, the R(T) peak close to T(c) is rarely observed, and it reaches only a few percent in amplitude. Here we report on the observation of a giant (â¼1600%) and very narrow (â¼1 K) resistance peak preceding the onset of superconductivity in heavily boron-doped diamond. This anomalous R(T) peak in a 3D system is interpreted in the framework of an empirical model based on the metal-bosonic insulator-superconductor transitions induced by a granularity-correlated disorder in heavily doped diamond.
Buscar no Google
Coleções:
01-internacional
Base de dados:
MEDLINE
Idioma:
En
Revista:
Phys Rev Lett
Ano de publicação:
2013
Tipo de documento:
Article
País de afiliação:
Bélgica
País de publicação:
Estados Unidos