Your browser doesn't support javascript.
loading
Study on screening and antagonistic mechanisms of Bacillus amyloliquefaciens 54 against bacterial fruit blotch (BFB) caused by Acidovorax avenae subsp. citrulli.
Jiang, Chun-Hao; Wu, Fang; Yu, Zhen-Yun; Xie, Ping; Ke, Hong-Jiao; Li, Hong-Wei; Yu, Yi-Yang; Guo, Jian-Hua.
Afiliação
  • Jiang CH; Department of Plant Pathology, College of Plant Protection, Nanjing Agricultural University, Engineering Center of Bioresource Pesticide in Jiangsu Province, Key Laboratory of Monitoring and Management of Crop Diseases and Pest Insects, Ministry of Agriculture, Nanjing 210095, China.
  • Wu F; Department of Plant Pathology, College of Plant Protection, Nanjing Agricultural University, Engineering Center of Bioresource Pesticide in Jiangsu Province, Key Laboratory of Monitoring and Management of Crop Diseases and Pest Insects, Ministry of Agriculture, Nanjing 210095, China.
  • Yu ZY; Department of Plant Pathology, College of Plant Protection, Nanjing Agricultural University, Engineering Center of Bioresource Pesticide in Jiangsu Province, Key Laboratory of Monitoring and Management of Crop Diseases and Pest Insects, Ministry of Agriculture, Nanjing 210095, China.
  • Xie P; Department of Plant Pathology, College of Plant Protection, Nanjing Agricultural University, Engineering Center of Bioresource Pesticide in Jiangsu Province, Key Laboratory of Monitoring and Management of Crop Diseases and Pest Insects, Ministry of Agriculture, Nanjing 210095, China.
  • Ke HJ; Department of Plant Pathology, College of Plant Protection, Nanjing Agricultural University, Engineering Center of Bioresource Pesticide in Jiangsu Province, Key Laboratory of Monitoring and Management of Crop Diseases and Pest Insects, Ministry of Agriculture, Nanjing 210095, China.
  • Li HW; Department of Plant Pathology, College of Plant Protection, Nanjing Agricultural University, Engineering Center of Bioresource Pesticide in Jiangsu Province, Key Laboratory of Monitoring and Management of Crop Diseases and Pest Insects, Ministry of Agriculture, Nanjing 210095, China.
  • Yu YY; Department of Plant Pathology, College of Plant Protection, Nanjing Agricultural University, Engineering Center of Bioresource Pesticide in Jiangsu Province, Key Laboratory of Monitoring and Management of Crop Diseases and Pest Insects, Ministry of Agriculture, Nanjing 210095, China.
  • Guo JH; Department of Plant Pathology, College of Plant Protection, Nanjing Agricultural University, Engineering Center of Bioresource Pesticide in Jiangsu Province, Key Laboratory of Monitoring and Management of Crop Diseases and Pest Insects, Ministry of Agriculture, Nanjing 210095, China. Electronic addr
Microbiol Res ; 170: 95-104, 2015 Jan.
Article em En | MEDLINE | ID: mdl-25267487
ABSTRACT
Bacterial fruit blotch (BFB) was a serious threat to cucurbitaceae crops. It was caused by the gram-negative bacterium Acidovorax avenae subsp. citrulli. Two hundred strains, which have the potential in controlling plant diseases in our laboratory's biocontrol strain library, were employed to this research to screen some antagonistic bacteria, which can efficiently control bacterial fruit blotch disease. Based on the results of antagonistic activity experiments, greenhouse tests and field trials, 5 of the test strains have high abilities to control BFB. One of the 5 bacteria strains has the highest potential to control BFB named 54. The biocontrol efficacy of 54 was up to 60%. To characterize the strain, we used series of methods to evaluate the bacterium, including morphology analysis, physiological biochemical test and biomolecular assay. We found that the bacterium 54 belongs to the species Bacillus amyloliquefaciens. The colonization test results showed that 54 had the highest colonization levels, and the density of the strain on leaves was up 10(5)colony forming units (CFU) per gram of leaf tissue. Our recent results show that B. amyloliquefaciens 54 can promote the plant growth due to raised the contents of available N, P, K and the leaf chlorophyll. The antagonistic bacterium 54 can significantly control the BF B by increasing the expression level of defense-related gene PR1 and the accumulation the hydrogen peroxide in the plant. The results of trail experiment was also verified this efficient results of bacterium. This is also the first report of B. amyloliquefaciens strain that is able to control BFB.
Assuntos
Palavras-chave

Texto completo: 1 Coleções: 01-internacional Base de dados: MEDLINE Assunto principal: Doenças das Plantas / Bacillus / Comamonadaceae / Agentes de Controle Biológico / Antibiose Tipo de estudo: Diagnostic_studies / Screening_studies Idioma: En Revista: Microbiol Res Assunto da revista: MICROBIOLOGIA / SAUDE AMBIENTAL Ano de publicação: 2015 Tipo de documento: Article País de afiliação: China

Texto completo: 1 Coleções: 01-internacional Base de dados: MEDLINE Assunto principal: Doenças das Plantas / Bacillus / Comamonadaceae / Agentes de Controle Biológico / Antibiose Tipo de estudo: Diagnostic_studies / Screening_studies Idioma: En Revista: Microbiol Res Assunto da revista: MICROBIOLOGIA / SAUDE AMBIENTAL Ano de publicação: 2015 Tipo de documento: Article País de afiliação: China