Your browser doesn't support javascript.
loading
First experimental charge density study using a Bruker CMOS-type PHOTON 100 detector: the case of ammonium tetraoxalate dihydrate.
Jarzembska, Katarzyna N; Kaminski, Radoslaw; Dobrzycki, Lukasz; Cyranski, Michal K.
Afiliação
  • Jarzembska KN; Czochralski Laboratory of Advanced Crystal Engineering, Biological and Chemical Research Centre, Department of Chemistry, University of Warsaw, Zwirki i Wigury 101, 02-089 Warsaw, Poland.
  • Kaminski R; Department of Chemistry, University at Buffalo, The State University of New York, Buffalo, NY 14260-3000, USA.
  • Dobrzycki L; Czochralski Laboratory of Advanced Crystal Engineering, Biological and Chemical Research Centre, Department of Chemistry, University of Warsaw, Zwirki i Wigury 101, 02-089 Warsaw, Poland.
  • Cyranski MK; Czochralski Laboratory of Advanced Crystal Engineering, Biological and Chemical Research Centre, Department of Chemistry, University of Warsaw, Zwirki i Wigury 101, 02-089 Warsaw, Poland.
Article em En | MEDLINE | ID: mdl-25274518
The aim of this study was to test the applicability of a Bruker AXS CMOS-type PHOTON 100 detector for the purpose of a fine charge density quality data collection. A complex crystal containing oxalic acid, ammonium oxalate and two water molecules was chosen as a test case. The data was collected up to a resolution of 1.31 Å(-1) with high completeness (89.1%; Rmrg = 0.0274). The multipolar refinement and subsequent quantum theory of atoms in molecules (QTAIM) analysis resulted in a comprehensive description of the charge density distribution in the crystal studied. The residual density maps are flat and almost featureless. It was possible to derive reliable information on intermolecular interactions to model the anharmonic motion of a water molecule, and also to observe the fine details of the charge density distribution, such as polarization on O and H atoms involved in the strongest hydrogen bonds. When compared with our previous statistical study on oxalic acid data collected with the aid of CCD cameras, the complementary metal-oxide semiconductor (CMOS) detector can certainly be classified as a promising alternative in advanced X-ray diffraction studies.
Assuntos
Palavras-chave

Texto completo: 1 Coleções: 01-internacional Base de dados: MEDLINE Assunto principal: Oxalatos / Difração de Raios X / Modelos Moleculares / Ácido Oxálico / Compostos de Amônio Idioma: En Revista: Acta Crystallogr B Struct Sci Cryst Eng Mater Ano de publicação: 2014 Tipo de documento: Article País de afiliação: Polônia País de publicação: Reino Unido

Texto completo: 1 Coleções: 01-internacional Base de dados: MEDLINE Assunto principal: Oxalatos / Difração de Raios X / Modelos Moleculares / Ácido Oxálico / Compostos de Amônio Idioma: En Revista: Acta Crystallogr B Struct Sci Cryst Eng Mater Ano de publicação: 2014 Tipo de documento: Article País de afiliação: Polônia País de publicação: Reino Unido