Your browser doesn't support javascript.
loading
The role of lattice parameter in water adsorption and wetting of a solid surface.
Massey, A; McBride, F; Darling, G R; Nakamura, M; Hodgson, A.
Afiliação
  • Massey A; Department of Chemistry, University of Liverpool, Liverpool L69 3BX, UK. ahodgson@liverpool.ac.uk.
Phys Chem Chem Phys ; 16(43): 24018-25, 2014 Nov 21.
Article em En | MEDLINE | ID: mdl-25286238
ABSTRACT
Ice formation is a complex cooperative process that is almost invariably catalysed by the presence of an interface on which ice crystals nucleate. As yet there is no clear picture of what factors make a surface particularly good at nucleating ice, but the importance of having a template with a suitable lattice parameter has often been proposed. Here we report the contrasting wetting behaviour of a series of pseudomorphic surfaces, designed to form an ordered template that matches the arrangement of water in a bulk ice Ih(0001) bilayer. The close-packed M(111) surfaces (M = Pt, Pd, Rh, Cu and Ni) form a (√3 × âˆš3) R30° Sn substitutional alloy surface, with Sn atoms occupying sites that match the symmetry of an ice bilayer. The lattice constant of the alloy changes from 4% smaller to 7% greater than the lateral spacing of ice across the series. We show that only the PtSn surface, with a lattice parameter some 7% greater than that of a bulk ice layer, forms a stable water layer, all the other surfaces being non-wetting and instead forming multilayer ice clusters. This observation is consistent with the idea that the repeat spacing of the surface should ideally match the O-O spacing in ice, rather than the bulk ice lattice parameter, in order to form a continuous commensurate water monolayer. We discuss the role of the lattice parameter in stabilising the first layer of water and the factors that lead to formation of a simple commensurate structure rather than an incommensurate or large unit cell water network. We argue that lattice match is not a good criteria for a material to give low energy nucleation sites for bulk ice, and that considerations such as binding energy and mobility of the surface layer are more relevant.

Texto completo: 1 Coleções: 01-internacional Base de dados: MEDLINE Idioma: En Revista: Phys Chem Chem Phys Assunto da revista: BIOFISICA / QUIMICA Ano de publicação: 2014 Tipo de documento: Article País de afiliação: Reino Unido

Texto completo: 1 Coleções: 01-internacional Base de dados: MEDLINE Idioma: En Revista: Phys Chem Chem Phys Assunto da revista: BIOFISICA / QUIMICA Ano de publicação: 2014 Tipo de documento: Article País de afiliação: Reino Unido