Your browser doesn't support javascript.
loading
Ion intercalation into two-dimensional transition-metal carbides: global screening for new high-capacity battery materials.
Eames, Christopher; Islam, M Saiful.
Afiliação
  • Eames C; Department of Chemistry, University of Bath , Bath BA2 7AY, United Kingdom.
J Am Chem Soc ; 136(46): 16270-6, 2014 Nov 19.
Article em En | MEDLINE | ID: mdl-25310601
ABSTRACT
Two-dimensional transition metal carbides (termed MXenes) are a new family of compounds generating considerable interest due to their unique properties and potential applications. Intercalation of ions into MXenes has recently been demonstrated with good electrochemical performance, making them viable electrode materials for rechargeable batteries. Here we have performed global screening of the capacity and voltage for a variety of intercalation ions (Li(+), Na(+), K(+), and Mg(2+)) into a large number of M2C-based compounds (M = Sc, Ti, V, Cr, Zr, Nb, Mo, Hf, Ta) with F-, H-, O-, and OH-functionalized surfaces using density functional theory methods. In terms of gravimetric capacity a greater amount of Li(+) or Mg(2+) can be intercalated into an MXene than Na(+) or K(+), which is related to the size of the intercalating ion. Variation of the surface functional group and transition metal species can significantly affect the voltage and capacity of an MXene, with oxygen termination leading to the highest capacity. The most promising group of M2C materials in terms of anode voltage and gravimetric capacity (>400 mAh/g) are compounds containing light transition metals (e.g., Sc, Ti, V, and Cr) with nonfunctionalized or O-terminated surfaces. The results presented here provide valuable insights into exploring a rich variety of high-capacity MXenes for potential battery applications.

Texto completo: 1 Coleções: 01-internacional Base de dados: MEDLINE Tipo de estudo: Diagnostic_studies / Screening_studies Idioma: En Revista: J Am Chem Soc Ano de publicação: 2014 Tipo de documento: Article País de publicação: EEUU / ESTADOS UNIDOS / ESTADOS UNIDOS DA AMERICA / EUA / UNITED STATES / UNITED STATES OF AMERICA / US / USA

Texto completo: 1 Coleções: 01-internacional Base de dados: MEDLINE Tipo de estudo: Diagnostic_studies / Screening_studies Idioma: En Revista: J Am Chem Soc Ano de publicação: 2014 Tipo de documento: Article País de publicação: EEUU / ESTADOS UNIDOS / ESTADOS UNIDOS DA AMERICA / EUA / UNITED STATES / UNITED STATES OF AMERICA / US / USA