Your browser doesn't support javascript.
loading
Cortical thickness and semantic fluency in Alzheimer's disease and mild cognitive impairment.
Eastman, Jennifer A; Hwang, Kristy S; Lazaris, Andreas; Chow, Nicole; Ramirez, Leslie; Babakchanian, Sona; Woo, Ellen; Thompson, Paul M; Apostolova, Liana G.
Afiliação
  • Eastman JA; Department of Neurology, UCLA, Los Angeles, CA, USA ; Imaging Genetics Center, Laboratory of Neuro Imaging, UCLA, Los Angeles, CA, USA.
  • Hwang KS; Department of Neurology, UCLA, Los Angeles, CA, USA ; Imaging Genetics Center, Laboratory of Neuro Imaging, UCLA, Los Angeles, CA, USA.
  • Lazaris A; University of California Berkeley, Berkeley, CA, USA.
  • Chow N; Department of Neurology, UCLA, Los Angeles, CA, USA ; Imaging Genetics Center, Laboratory of Neuro Imaging, UCLA, Los Angeles, CA, USA.
  • Ramirez L; Department of Neurology, UCLA, Los Angeles, CA, USA ; Imaging Genetics Center, Laboratory of Neuro Imaging, UCLA, Los Angeles, CA, USA.
  • Babakchanian S; Department of Neurology, UCLA, Los Angeles, CA, USA ; Imaging Genetics Center, Laboratory of Neuro Imaging, UCLA, Los Angeles, CA, USA.
  • Woo E; Department of Neurology, UCLA, Los Angeles, CA, USA.
  • Thompson PM; Department of Neurology, UCLA, Los Angeles, CA, USA ; Imaging Genetics Center, Laboratory of Neuro Imaging, UCLA, Los Angeles, CA, USA.
  • Apostolova LG; Department of Neurology, UCLA, Los Angeles, CA, USA ; Imaging Genetics Center, Laboratory of Neuro Imaging, UCLA, Los Angeles, CA, USA.
Article em En | MEDLINE | ID: mdl-25346870
The hallmark of Alzheimer's disease (AD) is declarative memory loss, but deficits in semantic fluency are also observed. We assessed how semantic fluency relates to cortical atrophy to identify specific regions that play a role in the loss of access to semantic information. Whole-brain structural magnetic resonance imaging (MRI) data were analyzed from 9 Normal Control (NC)(M=76.7, SD=5.6), 40 Mild Cognitive Impairment (MCI) (M=74.4, SD=8.6), and 10 probable AD (M=72.4, SD=8.0) subjects from the Alzheimer's Disease Neuroimaging Initiative (ADNI). They all were administered the Category Fluency (CF) animals and vegetables tests. Poorer semantic fluency was associated with bilateral cortical atrophy of the inferior parietal lobule (Brodman areas (BA) 39 and 40) and BA 6, 8, and 9 in the frontal lobe, as well as BA 22 in the temporal lobe. More diffuse frontal associations were seen in the left hemisphere involving BA 9, 10, 32, 44, 45, and 46. Additional cortical atrophy was seen in the temporoparietal (BA 37) and the right parastriate (BA 19, 18) cortices. Associations were more diffuse for performance on vegetable fluency than animal fluency. The permutation-corrected map-wise significance for CF animals was pcorrected=0.01 for the left hemisphere, and pcorrected=0.06 for the right hemisphere. The permutation-corrected map-wise significance for CF vegetables was pcorrected=0.009 for the left hemisphere, and pcorrected=0.03 for the right hemisphere. These results demonstrate the profound effect of cortical atrophy on semantic fluency. Specifically, tapping into semantic knowledge involves the frontal lobe in addition to the language cortices of the temporoparietal region.
Palavras-chave

Texto completo: 1 Coleções: 01-internacional Base de dados: MEDLINE Idioma: En Revista: Am J Alzheimers Dis (Columbia) Ano de publicação: 2013 Tipo de documento: Article País de afiliação: Estados Unidos País de publicação: Estados Unidos

Texto completo: 1 Coleções: 01-internacional Base de dados: MEDLINE Idioma: En Revista: Am J Alzheimers Dis (Columbia) Ano de publicação: 2013 Tipo de documento: Article País de afiliação: Estados Unidos País de publicação: Estados Unidos