Your browser doesn't support javascript.
loading
Functional characterization of sticholysin I and W111C mutant reveals the sequence of the actinoporin's pore assembly.
Antonini, Valeria; Pérez-Barzaga, Victor; Bampi, Silvia; Pentón, David; Martínez, Diana; Dalla Serra, Mauro; Tejuca, Mayra.
Afiliação
  • Antonini V; National Research Council of Italy - Institute of Biophysics and Bruno Kessler Foundation, Trento, Italy.
  • Pérez-Barzaga V; Center for Protein Studies, Faculty of Biology, University of Havana, Vedado, Ciudad de La Habana, Cuba.
  • Bampi S; National Research Council of Italy - Institute of Biophysics and Bruno Kessler Foundation, Trento, Italy.
  • Pentón D; Center for Protein Studies, Faculty of Biology, University of Havana, Vedado, Ciudad de La Habana, Cuba.
  • Martínez D; Center for Protein Studies, Faculty of Biology, University of Havana, Vedado, Ciudad de La Habana, Cuba.
  • Dalla Serra M; National Research Council of Italy - Institute of Biophysics and Bruno Kessler Foundation, Trento, Italy.
  • Tejuca M; Center for Protein Studies, Faculty of Biology, University of Havana, Vedado, Ciudad de La Habana, Cuba.
PLoS One ; 9(10): e110824, 2014.
Article em En | MEDLINE | ID: mdl-25350457
The use of pore-forming toxins in the construction of immunotoxins against tumour cells is an alternative for cancer therapy. In this protein family one of the most potent toxins are the actinoporins, cytolysins from sea anemones. We work on the construction of tumour proteinase-activated immunotoxins using sticholysin I (StI), an actinoporin isolated from the sea anemone Stichodactyla helianthus. To accomplish this objective, recombinant StI (StIr) with a mutation in the membrane binding region has been employed. In this work, it was evaluated the impact of mutating tryptophan 111 to cysteine on the toxin pore forming capability. StI W111C is still able to permeabilize erythrocytes and liposomes, but at ten-fold higher concentration than StI. This is due to its lower affinity for the membrane, which corroborates the importance of residue 111 for the binding of actinoporins to the lipid bilayer. In agreement, other functional characteristics not directly associated to the binding, are essentially the same for both variants, that is, pores have oligomeric structures with similar radii, conductance, cation-selectivity, and instantaneous current-voltage behavior. In addition, this work provides experimental evidence sustaining the toroidal protein-lipid actinoporins lytic structures, since the toxins provoke the trans-bilayer movement (flip-flop) of a pyrene-labeled analogue of phosphatidylcholine in liposomes, indicating the existence of continuity between the outer and the inner membrane leaflet. Finally, our planar lipid membranes results have also contributed to a better understanding of the actinoporin's pore assembly mechanism. After the toxin binding and the N-terminal insertion in the lipid membrane, the pore assembly occurs by passing through different transient sub-conductance states. These states, usually 3 or 4, are due to the successive incorporation of N-terminal α-helices and lipid heads to the growing pores until a stable toroidal oligomeric structure is formed, which is mainly tetrameric.
Assuntos

Texto completo: 1 Coleções: 01-internacional Base de dados: MEDLINE Assunto principal: Anêmonas-do-Mar Limite: Animals / Humans Idioma: En Revista: PLoS One Assunto da revista: CIENCIA / MEDICINA Ano de publicação: 2014 Tipo de documento: Article País de afiliação: Itália País de publicação: Estados Unidos

Texto completo: 1 Coleções: 01-internacional Base de dados: MEDLINE Assunto principal: Anêmonas-do-Mar Limite: Animals / Humans Idioma: En Revista: PLoS One Assunto da revista: CIENCIA / MEDICINA Ano de publicação: 2014 Tipo de documento: Article País de afiliação: Itália País de publicação: Estados Unidos