Your browser doesn't support javascript.
loading
Accurate and efficient quantum chemistry calculations for noncovalent interactions in many-body systems: the XSAPT family of methods.
Lao, Ka Un; Herbert, John M.
Afiliação
  • Lao KU; Department of Chemistry and Biochemistry, The Ohio State University , Columbus, Ohio 43210, United States.
J Phys Chem A ; 119(2): 235-52, 2015 Jan 15.
Article em En | MEDLINE | ID: mdl-25408114
We present an overview of "XSAPT", a family of quantum chemistry methods for noncovalent interactions. These methods combine an efficient, iterative, monomer-based approach to computing many-body polarization interactions with a two-body version of symmetry-adapted perturbation theory (SAPT). The result is an efficient method for computing accurate intermolecular interaction energies in large noncovalent assemblies such as molecular and ionic clusters, molecular crystals, clathrates, or protein-ligand complexes. As in traditional SAPT, the XSAPT energy is decomposable into physically meaningful components. Dispersion interactions are problematic in traditional low-order SAPT, and two new approaches are introduced here in an attempt to improve this situation: (1) third-generation empirical atom-atom dispersion potentials, and (2) an empirically scaled version of second-order SAPT dispersion. Comparison to high-level ab initio benchmarks for dimers, water clusters, halide-water clusters, a methane clathrate hydrate, and a DNA intercalation complex illustrate both the accuracy of XSAPT-based methods as well as their limitations. The computational cost of XSAPT scales as O(N(3))-O(N(5)) with respect to monomer size, N, depending upon the particular version that is employed, but the accuracy is typically superior to alternative ab initio methods with similar scaling. Moreover, the monomer-based nature of XSAPT calculations makes them trivially parallelizable, such that wall times scale linearly with respect to the number of monomer units. XSAPT-based methods thus open the door to both qualitative and quantitative studies of noncovalent interactions in clusters, biomolecules, and condensed-phase systems.
Assuntos

Texto completo: 1 Coleções: 01-internacional Base de dados: MEDLINE Assunto principal: Teoria Quântica / Técnicas de Química Analítica / Modelos Químicos Tipo de estudo: Qualitative_research Idioma: En Revista: J Phys Chem A Assunto da revista: QUIMICA Ano de publicação: 2015 Tipo de documento: Article País de afiliação: Estados Unidos País de publicação: Estados Unidos

Texto completo: 1 Coleções: 01-internacional Base de dados: MEDLINE Assunto principal: Teoria Quântica / Técnicas de Química Analítica / Modelos Químicos Tipo de estudo: Qualitative_research Idioma: En Revista: J Phys Chem A Assunto da revista: QUIMICA Ano de publicação: 2015 Tipo de documento: Article País de afiliação: Estados Unidos País de publicação: Estados Unidos