Your browser doesn't support javascript.
loading
The MT2 receptor stimulates axonogenesis and enhances synaptic transmission by activating Akt signaling.
Liu, D; Wei, N; Man, H-Y; Lu, Y; Zhu, L-Q; Wang, J-Z.
Afiliação
  • Liu D; 1] Department of Pathophyiology, School of Basic Medicine, Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430030, China [2] Sino-Canada Collaborative Platform on Molecular Biology of Neurological Disease, Key Laboratory of Neurological Diseases, Ministry of Education, T
  • Wei N; 1] Department of Pathophyiology, School of Basic Medicine, Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430030, China [2] Sino-Canada Collaborative Platform on Molecular Biology of Neurological Disease, Key Laboratory of Neurological Diseases, Ministry of Education, T
  • Man HY; Department of Biology, Boston University, Boston, MA 02215, USA.
  • Lu Y; 1] Sino-Canada Collaborative Platform on Molecular Biology of Neurological Disease, Key Laboratory of Neurological Diseases, Ministry of Education, Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430030, China [2] The Institute of Brain Research, Huazhong University of S
  • Zhu LQ; 1] Department of Pathophyiology, School of Basic Medicine, Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430030, China [2] Sino-Canada Collaborative Platform on Molecular Biology of Neurological Disease, Key Laboratory of Neurological Diseases, Ministry of Education, T
  • Wang JZ; 1] Department of Pathophyiology, School of Basic Medicine, Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430030, China [2] Sino-Canada Collaborative Platform on Molecular Biology of Neurological Disease, Key Laboratory of Neurological Diseases, Ministry of Education, T
Cell Death Differ ; 22(4): 583-96, 2015 Apr.
Article em En | MEDLINE | ID: mdl-25501601
ABSTRACT
The MT2 receptor is a principal type of G protein-coupled receptor that mainly mediates the effects of melatonin. Deficits of melatonin/MT2 signaling have been found in many neurological disorders, including Alzheimer's disease, the most common cause of dementia in the elderly, suggesting that preservation of the MT2 receptor may be beneficial to these neurological disorders. However, direct evidence linking the MT2 receptor to cognition-related synaptic plasticity remains to be established. Here, we report that the MT2 receptor, but not the MT1 receptor, is essential for axonogenesis both in vitro and in vivo. We find that axon formation is retarded in MT2 receptor knockout mice, MT2-shRNA electroporated brain slices or primary neurons treated with an MT2 receptor selective antagonist. Activation of the MT2 receptor promotes axonogenesis that is associated with an enhancement in excitatory synaptic transmission in central neurons. The signaling components downstream of the MT2 receptor consist of the Akt/GSK-3ß/CRMP-2 cascade. The MT2 receptor C-terminal motif binds to Akt directly. Either inhibition of the MT2 receptor or disruption of MT2 receptor-Akt binding reduces axonogenesis and synaptic transmission. Our data suggest that the MT2 receptor activates Akt/GSK-3ß/CRMP-2 signaling and is necessary and sufficient to mediate functional axonogenesis and synaptic formation in central neurons.
Assuntos

Texto completo: 1 Coleções: 01-internacional Base de dados: MEDLINE Assunto principal: Axônios / Transdução de Sinais / Receptor MT2 de Melatonina / Proteínas Proto-Oncogênicas c-akt Limite: Animals / Humans Idioma: En Revista: Cell Death Differ Ano de publicação: 2015 Tipo de documento: Article

Texto completo: 1 Coleções: 01-internacional Base de dados: MEDLINE Assunto principal: Axônios / Transdução de Sinais / Receptor MT2 de Melatonina / Proteínas Proto-Oncogênicas c-akt Limite: Animals / Humans Idioma: En Revista: Cell Death Differ Ano de publicação: 2015 Tipo de documento: Article