Your browser doesn't support javascript.
loading
Altered functional connectivity within the central reward network in overweight and obese women.
Coveleskie, K; Gupta, A; Kilpatrick, L A; Mayer, E D; Ashe-McNalley, C; Stains, J; Labus, J S; Mayer, E A.
Afiliação
  • Coveleskie K; Oppenheimer Center for Neurobiology of Stress, Ingestive Behavior and Obesity Program, UCLA Division of Digestive Diseases, UCLA, Los Angeles, CA, USA.
  • Gupta A; Oppenheimer Center for Neurobiology of Stress, Ingestive Behavior and Obesity Program, UCLA Division of Digestive Diseases, UCLA, Los Angeles, CA, USA.
  • Kilpatrick LA; Oppenheimer Center for Neurobiology of Stress, Ingestive Behavior and Obesity Program, UCLA Division of Digestive Diseases, UCLA, Los Angeles, CA, USA.
  • Mayer ED; Oppenheimer Center for Neurobiology of Stress, Ingestive Behavior and Obesity Program, UCLA Division of Digestive Diseases, UCLA, Los Angeles, CA, USA.
  • Ashe-McNalley C; Oppenheimer Center for Neurobiology of Stress, Ingestive Behavior and Obesity Program, UCLA Division of Digestive Diseases, UCLA, Los Angeles, CA, USA.
  • Stains J; Oppenheimer Center for Neurobiology of Stress, Ingestive Behavior and Obesity Program, UCLA Division of Digestive Diseases, UCLA, Los Angeles, CA, USA.
  • Labus JS; Oppenheimer Center for Neurobiology of Stress, Ingestive Behavior and Obesity Program, UCLA Division of Digestive Diseases, UCLA, Los Angeles, CA, USA.
  • Mayer EA; 1] Oppenheimer Center for Neurobiology of Stress, Ingestive Behavior and Obesity Program, UCLA Division of Digestive Diseases, UCLA, Los Angeles, CA, USA [2] Ahmanson-Lovelace Brain Mapping Center at UCLA, David Geffen School of Medicine at the University of California Los Angeles (UCLA), Los Angele
Nutr Diabetes ; 5: e148, 2015 Jan 19.
Article em En | MEDLINE | ID: mdl-25599560
BACKGROUND/OBJECTIVES: Neuroimaging studies in obese subjects have identified abnormal activation of key regions of central reward circuits, including the nucleus accumbens (NAcc), in response to food-related stimuli. We aimed to examine whether women with elevated body mass index (BMI) show structural and resting state (RS) functional connectivity alterations within regions of the reward network. SUBJECTS/METHODS: Fifty healthy, premenopausal women, 19 overweight and obese (high BMI=26-38 kg m(-2)) and 31 lean (BMI=19-25 kg m(-2)) were selected from the University of California Los Angeles' Oppenheimer Center for Neurobiology of Stress database. Structural and RS functional scans were collected. Group differences in grey matter volume (GMV) of the NAcc, oscillation dynamics of intrinsic brain activity and functional connectivity of the NAcc to regions within the reward network were examined. RESULTS: GMV of the left NAcc was significantly greater in the high BMI group than in the lean group (P=0.031). Altered frequency distributions were observed in women with high BMI compared with lean group in the left NAcc (P=0.009) in a medium-frequency (MF) band, and in bilateral anterior cingulate cortex (ACC) (P=0.014, <0.001) and ventro-medial prefrontal cortex (vmPFC) (P=0.034, <0.001) in a high-frequency band. Subjects with high BMI had greater connectivity of the left NAcc with bilateral ACC (P=0.024) and right vmPFC (P=0.032) in a MF band and with the left ACC (P=0.03) in a high frequency band. CONCLUSIONS: Overweight and obese women in the absence of food-related stimuli show significant structural and functional alterations within regions of reward-related brain networks, which may have a role in altered ingestive behaviors.

Texto completo: 1 Coleções: 01-internacional Base de dados: MEDLINE Idioma: En Revista: Nutr Diabetes Ano de publicação: 2015 Tipo de documento: Article País de afiliação: Estados Unidos País de publicação: Reino Unido

Texto completo: 1 Coleções: 01-internacional Base de dados: MEDLINE Idioma: En Revista: Nutr Diabetes Ano de publicação: 2015 Tipo de documento: Article País de afiliação: Estados Unidos País de publicação: Reino Unido