Your browser doesn't support javascript.
loading
Direct evaluation of myocardial viability and stem cell engraftment demonstrates salvage of the injured myocardium.
Kim, Paul J; Mahmoudi, Morteza; Ge, Xiaohu; Matsuura, Yuka; Toma, Ildiko; Metzler, Scott; Kooreman, Nigel G; Ramunas, John; Holbrook, Colin; McConnell, Michael V; Blau, Helen; Harnish, Phillip; Rulifson, Eric; Yang, Phillip C.
Afiliação
  • Kim PJ; From the Division of Cardiovascular Medicine, Department of Medicine, Stanford University Medical Center, CA (P.J.K., M.M., X.G., Y.M., I.T., S.M., N.G.K., M.V.M., E.R., P.C.Y.); Baxter Laboratory for Stem Cell Biology, Department of Microbiology and Immunology, Institute for Stem Cell Biology and R
  • Mahmoudi M; From the Division of Cardiovascular Medicine, Department of Medicine, Stanford University Medical Center, CA (P.J.K., M.M., X.G., Y.M., I.T., S.M., N.G.K., M.V.M., E.R., P.C.Y.); Baxter Laboratory for Stem Cell Biology, Department of Microbiology and Immunology, Institute for Stem Cell Biology and R
  • Ge X; From the Division of Cardiovascular Medicine, Department of Medicine, Stanford University Medical Center, CA (P.J.K., M.M., X.G., Y.M., I.T., S.M., N.G.K., M.V.M., E.R., P.C.Y.); Baxter Laboratory for Stem Cell Biology, Department of Microbiology and Immunology, Institute for Stem Cell Biology and R
  • Matsuura Y; From the Division of Cardiovascular Medicine, Department of Medicine, Stanford University Medical Center, CA (P.J.K., M.M., X.G., Y.M., I.T., S.M., N.G.K., M.V.M., E.R., P.C.Y.); Baxter Laboratory for Stem Cell Biology, Department of Microbiology and Immunology, Institute for Stem Cell Biology and R
  • Toma I; From the Division of Cardiovascular Medicine, Department of Medicine, Stanford University Medical Center, CA (P.J.K., M.M., X.G., Y.M., I.T., S.M., N.G.K., M.V.M., E.R., P.C.Y.); Baxter Laboratory for Stem Cell Biology, Department of Microbiology and Immunology, Institute for Stem Cell Biology and R
  • Metzler S; From the Division of Cardiovascular Medicine, Department of Medicine, Stanford University Medical Center, CA (P.J.K., M.M., X.G., Y.M., I.T., S.M., N.G.K., M.V.M., E.R., P.C.Y.); Baxter Laboratory for Stem Cell Biology, Department of Microbiology and Immunology, Institute for Stem Cell Biology and R
  • Kooreman NG; From the Division of Cardiovascular Medicine, Department of Medicine, Stanford University Medical Center, CA (P.J.K., M.M., X.G., Y.M., I.T., S.M., N.G.K., M.V.M., E.R., P.C.Y.); Baxter Laboratory for Stem Cell Biology, Department of Microbiology and Immunology, Institute for Stem Cell Biology and R
  • Ramunas J; From the Division of Cardiovascular Medicine, Department of Medicine, Stanford University Medical Center, CA (P.J.K., M.M., X.G., Y.M., I.T., S.M., N.G.K., M.V.M., E.R., P.C.Y.); Baxter Laboratory for Stem Cell Biology, Department of Microbiology and Immunology, Institute for Stem Cell Biology and R
  • Holbrook C; From the Division of Cardiovascular Medicine, Department of Medicine, Stanford University Medical Center, CA (P.J.K., M.M., X.G., Y.M., I.T., S.M., N.G.K., M.V.M., E.R., P.C.Y.); Baxter Laboratory for Stem Cell Biology, Department of Microbiology and Immunology, Institute for Stem Cell Biology and R
  • McConnell MV; From the Division of Cardiovascular Medicine, Department of Medicine, Stanford University Medical Center, CA (P.J.K., M.M., X.G., Y.M., I.T., S.M., N.G.K., M.V.M., E.R., P.C.Y.); Baxter Laboratory for Stem Cell Biology, Department of Microbiology and Immunology, Institute for Stem Cell Biology and R
  • Blau H; From the Division of Cardiovascular Medicine, Department of Medicine, Stanford University Medical Center, CA (P.J.K., M.M., X.G., Y.M., I.T., S.M., N.G.K., M.V.M., E.R., P.C.Y.); Baxter Laboratory for Stem Cell Biology, Department of Microbiology and Immunology, Institute for Stem Cell Biology and R
  • Harnish P; From the Division of Cardiovascular Medicine, Department of Medicine, Stanford University Medical Center, CA (P.J.K., M.M., X.G., Y.M., I.T., S.M., N.G.K., M.V.M., E.R., P.C.Y.); Baxter Laboratory for Stem Cell Biology, Department of Microbiology and Immunology, Institute for Stem Cell Biology and R
  • Rulifson E; From the Division of Cardiovascular Medicine, Department of Medicine, Stanford University Medical Center, CA (P.J.K., M.M., X.G., Y.M., I.T., S.M., N.G.K., M.V.M., E.R., P.C.Y.); Baxter Laboratory for Stem Cell Biology, Department of Microbiology and Immunology, Institute for Stem Cell Biology and R
  • Yang PC; From the Division of Cardiovascular Medicine, Department of Medicine, Stanford University Medical Center, CA (P.J.K., M.M., X.G., Y.M., I.T., S.M., N.G.K., M.V.M., E.R., P.C.Y.); Baxter Laboratory for Stem Cell Biology, Department of Microbiology and Immunology, Institute for Stem Cell Biology and R
Circ Res ; 116(7): e40-50, 2015 Mar 27.
Article em En | MEDLINE | ID: mdl-25654979
RATIONALE: The mechanism of functional restoration by stem cell therapy remains poorly understood. Novel manganese-enhanced MRI and bioluminescence reporter gene imaging were applied to follow myocardial viability and cell engraftment, respectively. Human-placenta-derived amniotic mesenchymal stem cells (AMCs) demonstrate unique immunoregulatory and precardiac properties. In this study, the restorative effects of 3 AMC-derived subpopulations were examined in a murine myocardial injury model: (1) unselected AMCs, (2) ckit(+)AMCs, and (3) AMC-derived induced pluripotent stem cells (MiPSCs). OBJECTIVE: To determine the differential restorative effects of the AMC-derived subpopulations in the murine myocardial injury model using multimodality imaging. METHODS AND RESULTS: SCID (severe combined immunodeficiency) mice underwent left anterior descending artery ligation and were divided into 4 treatment arms: (1) normal saline control (n=14), (2) unselected AMCs (n=10), (3) ckit(+)AMCs (n=13), and (4) MiPSCs (n=11). Cardiac MRI assessed myocardial viability and left ventricular function, whereas bioluminescence imaging assessed stem cell engraftment during a 4-week period. Immunohistological labeling and reverse transcriptase polymerase chain reaction of the explanted myocardium were performed. The unselected AMC and ckit(+)AMC-treated mice demonstrated transient left ventricular functional improvement. However, the MiPSCs exhibited a significantly greater increase in left ventricular function compared with all the other groups during the entire 4-week period. Left ventricular functional improvement correlated with increased myocardial viability and sustained stem cell engraftment. The MiPSC-treated animals lacked any evidence of de novo cardiac differentiation. CONCLUSION: The functional restoration seen in MiPSCs was characterized by increased myocardial viability and sustained engraftment without de novo cardiac differentiation, indicating salvage of the injured myocardium.
Assuntos
Palavras-chave

Texto completo: 1 Coleções: 01-internacional Base de dados: MEDLINE Assunto principal: Imageamento por Ressonância Magnética / Transplante de Células-Tronco Mesenquimais / Células-Tronco Pluripotentes Induzidas / Células-Tronco Mesenquimais / Imagem Multimodal / Infarto do Miocárdio / Miocárdio Tipo de estudo: Etiology_studies / Prognostic_studies Limite: Animals / Female / Humans / Male / Pregnancy Idioma: En Revista: Circ Res Ano de publicação: 2015 Tipo de documento: Article País de publicação: Estados Unidos

Texto completo: 1 Coleções: 01-internacional Base de dados: MEDLINE Assunto principal: Imageamento por Ressonância Magnética / Transplante de Células-Tronco Mesenquimais / Células-Tronco Pluripotentes Induzidas / Células-Tronco Mesenquimais / Imagem Multimodal / Infarto do Miocárdio / Miocárdio Tipo de estudo: Etiology_studies / Prognostic_studies Limite: Animals / Female / Humans / Male / Pregnancy Idioma: En Revista: Circ Res Ano de publicação: 2015 Tipo de documento: Article País de publicação: Estados Unidos