Your browser doesn't support javascript.
loading
A general route toward complete room temperature processing of printed and high performance oxide electronics.
Baby, Tessy T; Garlapati, Suresh K; Dehm, Simone; Häming, Marc; Kruk, Robert; Hahn, Horst; Dasgupta, Subho.
Afiliação
  • Baby TT; †Institute for Nanotechnology, Karlsruhe Institute of Technology (KIT), Hermann-von-Helmholtz Platz 1, 76344 Eggenstein-Leopoldshafen, Germany.
  • Garlapati SK; ‡Helmholtz Institute Ulm (HIU), Albert-Einstein-Allee 11, 89081 Ulm, Germany.
  • Dehm S; †Institute for Nanotechnology, Karlsruhe Institute of Technology (KIT), Hermann-von-Helmholtz Platz 1, 76344 Eggenstein-Leopoldshafen, Germany.
  • Häming M; §KIT-TUD Joint Research Laboratory Nanomaterials, Technische Universität Darmstadt (TUD), Institute of Materials Science, Jovanka-Bontschits-Str. 2, 64287 Darmstadt, Germany.
  • Kruk R; †Institute for Nanotechnology, Karlsruhe Institute of Technology (KIT), Hermann-von-Helmholtz Platz 1, 76344 Eggenstein-Leopoldshafen, Germany.
  • Hahn H; ⊥Institute for Photon Science and Synchrotron Radiation, Karlsruhe Institute of Technology (KIT), Hermann-von-Helmholtz Platz 1, 76344 Eggenstein-Leopoldshafen, Germany.
  • Dasgupta S; †Institute for Nanotechnology, Karlsruhe Institute of Technology (KIT), Hermann-von-Helmholtz Platz 1, 76344 Eggenstein-Leopoldshafen, Germany.
ACS Nano ; 9(3): 3075-83, 2015 Mar 24.
Article em En | MEDLINE | ID: mdl-25693653
ABSTRACT
Critical prerequisites for solution-processed/printed field-effect transistors (FETs) and logics are excellent electrical performance including high charge carrier mobility, reliability, high environmental stability and low/preferably room temperature processing. Oxide semiconductors can often fulfill all the above criteria, sometimes even with better promise than their organic counterparts, except for their high process temperature requirement. The need for high annealing/curing temperatures renders oxide FETs rather incompatible to inexpensive, flexible substrates, which are commonly used for high-throughput and roll-to-roll additive manufacturing techniques, such as printing. To overcome this serious limitation, here we demonstrate an alternative approach that enables completely room-temperature processing of printed oxide FETs with device mobility as large as 12.5 cm(2)/(V s). The key aspect of the present concept is a chemically controlled curing process of the printed nanoparticle ink that provides surprisingly dense thin films and excellent interparticle electrical contacts. In order to demonstrate the versatility of this approach, both n-type (In2O3) and p-type (Cu2O) oxide semiconductor nanoparticle dispersions are prepared to fabricate, inkjet printed and completely room temperature processed, all-oxide complementary metal oxide semiconductor (CMOS) invertors that can display significant signal gain (∼18) at a supply voltage of only 1.5 V.
Palavras-chave

Texto completo: 1 Coleções: 01-internacional Base de dados: MEDLINE Idioma: En Revista: ACS Nano Ano de publicação: 2015 Tipo de documento: Article País de afiliação: Alemanha

Texto completo: 1 Coleções: 01-internacional Base de dados: MEDLINE Idioma: En Revista: ACS Nano Ano de publicação: 2015 Tipo de documento: Article País de afiliação: Alemanha