Your browser doesn't support javascript.
loading
Standardizing Predicted Body Weight Equations for Mechanical Ventilation Tidal Volume Settings.
Linares-Perdomo, Olinto; East, Thomas D; Brower, Roy; Morris, Alan H.
Afiliação
  • Linares-Perdomo O; Pulmonary and Critical Care Division, Department of Medicine, Intermountain Medical Center, Salt Lake City, UT. Electronic address: Olinto.linares@imail.org.
  • East TD; LCF Research, New Mexico Health Information Collaborative, Albuquerque, NM; LCF Research, New Mexico Health Information Collaborative, Albuquerque, NM.
  • Brower R; Pulmonary and Critical Care Medicine (Dr Brower), Johns Hopkins University School of Medicine, Baltimore, MD.
  • Morris AH; Pulmonary and Critical Care Division, Department of Medicine, Intermountain Medical Center, Salt Lake City, UT; University of Utah School of Medicine, Salt Lake City, UT.
Chest ; 148(1): 73-78, 2015 Jul.
Article em En | MEDLINE | ID: mdl-25741642
ABSTRACT

BACKGROUND:

Recent recommendations for lung protective mechanical ventilation include a tidal volume target of 6 mL/kg predicted body weight (PBW). Different PBW equations might introduce important differences in tidal volumes delivered to research subjects and patients.

METHODS:

PBW equations use height, age, and sex as input variables. We compared National Institutes of Health (NIH) ARDS Network (ARDSNet), actuarial table (ACTUARIAL), and Stewart (STEWART) PBW equations used in clinical trials, across physiologic ranges for age and height. We used three-dimensional and two-dimensional surface analysis to compare these PBW equations. We then used age and height from actual clinical trial subjects to quantify PBW equation differences.

RESULTS:

Significant potential differences existed between these PBW predictions. The ACTUARIAL and ARDSNet surfaces for women were the only surfaces that intersected and produced both positive and negative differences. Mathematical differences between PBW equations at limits of height and age exceeded 30% in women and 24% in men for ACTUARIAL vs ARDSNet and about 25% for women and 15% for men for STEWART vs ARDSNet. The largest mathematical differences were present in older, shorter subjects, especially women. Actual differences for clinical trial subjects were as high as 15% for men and 24% for women.

CONCLUSIONS:

Significant differences between PBW equations for both men and women could be important sources of interstudy variation. Studies should adopt a standard PBW equation. We recommend using the NIH National Heart, Lung, and Blood Institute ARDS Network PBW equation because it is associated with the clinical trial that identified 6 mL/kg PBW as an appropriate target.
Assuntos

Texto completo: 1 Coleções: 01-internacional Base de dados: MEDLINE Assunto principal: Respiração Artificial / Insuficiência Respiratória / Peso Corporal / Algoritmos Tipo de estudo: Clinical_trials / Guideline / Prognostic_studies / Risk_factors_studies Limite: Adolescent / Adult / Aged / Aged80 / Female / Humans / Male / Middle aged País/Região como assunto: America do norte Idioma: En Revista: Chest Ano de publicação: 2015 Tipo de documento: Article

Texto completo: 1 Coleções: 01-internacional Base de dados: MEDLINE Assunto principal: Respiração Artificial / Insuficiência Respiratória / Peso Corporal / Algoritmos Tipo de estudo: Clinical_trials / Guideline / Prognostic_studies / Risk_factors_studies Limite: Adolescent / Adult / Aged / Aged80 / Female / Humans / Male / Middle aged País/Região como assunto: America do norte Idioma: En Revista: Chest Ano de publicação: 2015 Tipo de documento: Article