Graphics Processing Unit-Accelerated Nonrigid Registration of MR Images to CT Images During CT-Guided Percutaneous Liver Tumor Ablations.
Acad Radiol
; 22(6): 722-33, 2015 Jun.
Article
em En
| MEDLINE
| ID: mdl-25784325
RATIONALE AND OBJECTIVES: Accuracy and speed are essential for the intraprocedural nonrigid magnetic resonance (MR) to computed tomography (CT) image registration in the assessment of tumor margins during CT-guided liver tumor ablations. Although both accuracy and speed can be improved by limiting the registration to a region of interest (ROI), manual contouring of the ROI prolongs the registration process substantially. To achieve accurate and fast registration without the use of an ROI, we combined a nonrigid registration technique on the basis of volume subdivision with hardware acceleration using a graphics processing unit (GPU). We compared the registration accuracy and processing time of GPU-accelerated volume subdivision-based nonrigid registration technique to the conventional nonrigid B-spline registration technique. MATERIALS AND METHODS: Fourteen image data sets of preprocedural MR and intraprocedural CT images for percutaneous CT-guided liver tumor ablations were obtained. Each set of images was registered using the GPU-accelerated volume subdivision technique and the B-spline technique. Manual contouring of ROI was used only for the B-spline technique. Registration accuracies (Dice similarity coefficient [DSC] and 95% Hausdorff distance [HD]) and total processing time including contouring of ROIs and computation were compared using a paired Student t test. RESULTS: Accuracies of the GPU-accelerated registrations and B-spline registrations, respectively, were 88.3 ± 3.7% versus 89.3 ± 4.9% (P = .41) for DSC and 13.1 ± 5.2 versus 11.4 ± 6.3 mm (P = .15) for HD. Total processing time of the GPU-accelerated registration and B-spline registration techniques was 88 ± 14 versus 557 ± 116 seconds (P < .000000002), respectively; there was no significant difference in computation time despite the difference in the complexity of the algorithms (P = .71). CONCLUSIONS: The GPU-accelerated volume subdivision technique was as accurate as the B-spline technique and required significantly less processing time. The GPU-accelerated volume subdivision technique may enable the implementation of nonrigid registration into routine clinical practice.
Palavras-chave
Texto completo:
1
Coleções:
01-internacional
Base de dados:
MEDLINE
Assunto principal:
Processamento de Imagem Assistida por Computador
/
Imageamento por Ressonância Magnética
/
Tomografia Computadorizada por Raios X
/
Radiografia Intervencionista
/
Ablação por Cateter
/
Neoplasias Hepáticas
Tipo de estudo:
Guideline
/
Observational_studies
Limite:
Aged
/
Aged80
/
Female
/
Humans
/
Male
/
Middle aged
Idioma:
En
Revista:
Acad Radiol
Assunto da revista:
RADIOLOGIA
Ano de publicação:
2015
Tipo de documento:
Article
País de publicação:
Estados Unidos