Your browser doesn't support javascript.
loading
Combined intramyocardial delivery of human pericytes and cardiac stem cells additively improves the healing of mouse infarcted hearts through stimulation of vascular and muscular repair.
Avolio, Elisa; Meloni, Marco; Spencer, Helen L; Riu, Federica; Katare, Rajesh; Mangialardi, Giuseppe; Oikawa, Atsuhiko; Rodriguez-Arabaolaza, Iker; Dang, Zexu; Mitchell, Kathryn; Reni, Carlotta; Alvino, Valeria V; Rowlinson, Jonathan; Livi, Ugolini; Cesselli, Daniela; Angelini, Gianni; Emanueli, Costanza; Beltrami, Antonio P; Madeddu, Paolo.
Afiliação
  • Avolio E; From the Experimental Cardiovascular Medicine (E.A., H.L.S., F.R., R.K., G.M., A.O., I.R.-A., Z.D., K.M., C.R., V.V.A., J.R., P.M.) and Vascular Pathology and Regeneration (M.M., C.E.), School of Clinical Sciences, University of Bristol, Bristol, United Kingdom; Institute of Cardiovascular and Medic
  • Meloni M; From the Experimental Cardiovascular Medicine (E.A., H.L.S., F.R., R.K., G.M., A.O., I.R.-A., Z.D., K.M., C.R., V.V.A., J.R., P.M.) and Vascular Pathology and Regeneration (M.M., C.E.), School of Clinical Sciences, University of Bristol, Bristol, United Kingdom; Institute of Cardiovascular and Medic
  • Spencer HL; From the Experimental Cardiovascular Medicine (E.A., H.L.S., F.R., R.K., G.M., A.O., I.R.-A., Z.D., K.M., C.R., V.V.A., J.R., P.M.) and Vascular Pathology and Regeneration (M.M., C.E.), School of Clinical Sciences, University of Bristol, Bristol, United Kingdom; Institute of Cardiovascular and Medic
  • Riu F; From the Experimental Cardiovascular Medicine (E.A., H.L.S., F.R., R.K., G.M., A.O., I.R.-A., Z.D., K.M., C.R., V.V.A., J.R., P.M.) and Vascular Pathology and Regeneration (M.M., C.E.), School of Clinical Sciences, University of Bristol, Bristol, United Kingdom; Institute of Cardiovascular and Medic
  • Katare R; From the Experimental Cardiovascular Medicine (E.A., H.L.S., F.R., R.K., G.M., A.O., I.R.-A., Z.D., K.M., C.R., V.V.A., J.R., P.M.) and Vascular Pathology and Regeneration (M.M., C.E.), School of Clinical Sciences, University of Bristol, Bristol, United Kingdom; Institute of Cardiovascular and Medic
  • Mangialardi G; From the Experimental Cardiovascular Medicine (E.A., H.L.S., F.R., R.K., G.M., A.O., I.R.-A., Z.D., K.M., C.R., V.V.A., J.R., P.M.) and Vascular Pathology and Regeneration (M.M., C.E.), School of Clinical Sciences, University of Bristol, Bristol, United Kingdom; Institute of Cardiovascular and Medic
  • Oikawa A; From the Experimental Cardiovascular Medicine (E.A., H.L.S., F.R., R.K., G.M., A.O., I.R.-A., Z.D., K.M., C.R., V.V.A., J.R., P.M.) and Vascular Pathology and Regeneration (M.M., C.E.), School of Clinical Sciences, University of Bristol, Bristol, United Kingdom; Institute of Cardiovascular and Medic
  • Rodriguez-Arabaolaza I; From the Experimental Cardiovascular Medicine (E.A., H.L.S., F.R., R.K., G.M., A.O., I.R.-A., Z.D., K.M., C.R., V.V.A., J.R., P.M.) and Vascular Pathology and Regeneration (M.M., C.E.), School of Clinical Sciences, University of Bristol, Bristol, United Kingdom; Institute of Cardiovascular and Medic
  • Dang Z; From the Experimental Cardiovascular Medicine (E.A., H.L.S., F.R., R.K., G.M., A.O., I.R.-A., Z.D., K.M., C.R., V.V.A., J.R., P.M.) and Vascular Pathology and Regeneration (M.M., C.E.), School of Clinical Sciences, University of Bristol, Bristol, United Kingdom; Institute of Cardiovascular and Medic
  • Mitchell K; From the Experimental Cardiovascular Medicine (E.A., H.L.S., F.R., R.K., G.M., A.O., I.R.-A., Z.D., K.M., C.R., V.V.A., J.R., P.M.) and Vascular Pathology and Regeneration (M.M., C.E.), School of Clinical Sciences, University of Bristol, Bristol, United Kingdom; Institute of Cardiovascular and Medic
  • Reni C; From the Experimental Cardiovascular Medicine (E.A., H.L.S., F.R., R.K., G.M., A.O., I.R.-A., Z.D., K.M., C.R., V.V.A., J.R., P.M.) and Vascular Pathology and Regeneration (M.M., C.E.), School of Clinical Sciences, University of Bristol, Bristol, United Kingdom; Institute of Cardiovascular and Medic
  • Alvino VV; From the Experimental Cardiovascular Medicine (E.A., H.L.S., F.R., R.K., G.M., A.O., I.R.-A., Z.D., K.M., C.R., V.V.A., J.R., P.M.) and Vascular Pathology and Regeneration (M.M., C.E.), School of Clinical Sciences, University of Bristol, Bristol, United Kingdom; Institute of Cardiovascular and Medic
  • Rowlinson J; From the Experimental Cardiovascular Medicine (E.A., H.L.S., F.R., R.K., G.M., A.O., I.R.-A., Z.D., K.M., C.R., V.V.A., J.R., P.M.) and Vascular Pathology and Regeneration (M.M., C.E.), School of Clinical Sciences, University of Bristol, Bristol, United Kingdom; Institute of Cardiovascular and Medic
  • Livi U; From the Experimental Cardiovascular Medicine (E.A., H.L.S., F.R., R.K., G.M., A.O., I.R.-A., Z.D., K.M., C.R., V.V.A., J.R., P.M.) and Vascular Pathology and Regeneration (M.M., C.E.), School of Clinical Sciences, University of Bristol, Bristol, United Kingdom; Institute of Cardiovascular and Medic
  • Cesselli D; From the Experimental Cardiovascular Medicine (E.A., H.L.S., F.R., R.K., G.M., A.O., I.R.-A., Z.D., K.M., C.R., V.V.A., J.R., P.M.) and Vascular Pathology and Regeneration (M.M., C.E.), School of Clinical Sciences, University of Bristol, Bristol, United Kingdom; Institute of Cardiovascular and Medic
  • Angelini G; From the Experimental Cardiovascular Medicine (E.A., H.L.S., F.R., R.K., G.M., A.O., I.R.-A., Z.D., K.M., C.R., V.V.A., J.R., P.M.) and Vascular Pathology and Regeneration (M.M., C.E.), School of Clinical Sciences, University of Bristol, Bristol, United Kingdom; Institute of Cardiovascular and Medic
  • Emanueli C; From the Experimental Cardiovascular Medicine (E.A., H.L.S., F.R., R.K., G.M., A.O., I.R.-A., Z.D., K.M., C.R., V.V.A., J.R., P.M.) and Vascular Pathology and Regeneration (M.M., C.E.), School of Clinical Sciences, University of Bristol, Bristol, United Kingdom; Institute of Cardiovascular and Medic
  • Beltrami AP; From the Experimental Cardiovascular Medicine (E.A., H.L.S., F.R., R.K., G.M., A.O., I.R.-A., Z.D., K.M., C.R., V.V.A., J.R., P.M.) and Vascular Pathology and Regeneration (M.M., C.E.), School of Clinical Sciences, University of Bristol, Bristol, United Kingdom; Institute of Cardiovascular and Medic
  • Madeddu P; From the Experimental Cardiovascular Medicine (E.A., H.L.S., F.R., R.K., G.M., A.O., I.R.-A., Z.D., K.M., C.R., V.V.A., J.R., P.M.) and Vascular Pathology and Regeneration (M.M., C.E.), School of Clinical Sciences, University of Bristol, Bristol, United Kingdom; Institute of Cardiovascular and Medic
Circ Res ; 116(10): e81-94, 2015 May 08.
Article em En | MEDLINE | ID: mdl-25801898
ABSTRACT
RATIONALE Optimization of cell therapy for cardiac repair may require the association of different cell populations with complementary activities.

OBJECTIVE:

Compare the reparative potential of saphenous vein-derived pericytes (SVPs) with that of cardiac stem cells (CSCs) in a model of myocardial infarction, and investigate whether combined cell transplantation provides further improvements. METHODS AND

RESULTS:

SVPs and CSCs were isolated from vein leftovers of coronary artery bypass graft surgery and discarded atrial specimens of transplanted hearts, respectively. Single or dual cell therapy (300 000 cells of each type per heart) was tested in infarcted SCID (severe combined immunodeficiency)-Beige mice. SVPs and CSCs alone improved cardiac contractility as assessed by echocardiography at 14 days post myocardial infarction. The effect was maintained, although attenuated at 42 days. At histological level, SVPs and CSCs similarly inhibited infarct size and interstitial fibrosis, SVPs were superior in inducing angiogenesis and CSCs in promoting cardiomyocyte proliferation and recruitment of endogenous stem cells. The combination of cells additively reduced the infarct size and promoted vascular proliferation and arteriogenesis, but did not surpass single therapies with regard to contractility indexes. SVPs and CSCs secrete similar amounts of hepatocyte growth factor, vascular endothelial growth factor, fibroblast growth factor, stem cell factor, and stromal cell-derived factor-1, whereas SVPs release higher quantities of angiopoietins and microRNA-132. Coculture of the 2 cell populations results in competitive as well as enhancing paracrine activities. In particular, the release of stromal cell-derived factor-1 was synergistically augmented along with downregulation of stromal cell-derived factor-1-degrading enzyme dipeptidyl peptidase 4.

CONCLUSIONS:

Combinatory therapy with SVPs and CSCs may complementarily help the repair of infarcted hearts.
Assuntos
Palavras-chave

Texto completo: 1 Coleções: 01-internacional Base de dados: MEDLINE Assunto principal: Regeneração / Neovascularização Fisiológica / Pericitos / Miócitos Cardíacos / Transplante de Células-Tronco / Infarto do Miocárdio / Miocárdio Tipo de estudo: Prognostic_studies Limite: Animals / Humans Idioma: En Revista: Circ Res Ano de publicação: 2015 Tipo de documento: Article

Texto completo: 1 Coleções: 01-internacional Base de dados: MEDLINE Assunto principal: Regeneração / Neovascularização Fisiológica / Pericitos / Miócitos Cardíacos / Transplante de Células-Tronco / Infarto do Miocárdio / Miocárdio Tipo de estudo: Prognostic_studies Limite: Animals / Humans Idioma: En Revista: Circ Res Ano de publicação: 2015 Tipo de documento: Article