Your browser doesn't support javascript.
loading
A RNA-seq approach to identify putative toxins from acrorhagi in aggressive and non-aggressive Anthopleura elegantissima polyps.
Macrander, Jason; Brugler, Mercer R; Daly, Marymegan.
Afiliação
  • Macrander J; The Ohio State University, Evolution, Ecology, and Organismal Biology, 318 W. 12th Avenue, Columbus, OH, 43210-1293, USA. macrander.1@osu.edu.
  • Brugler MR; Sackler Institute for Comparative Genomics, Division of Invertebrate Zoology, American Museum of Natural History, Central Park West at 79th Street, New York, NY, 10024, USA. mbrugler@citytech.cuny.edu.
  • Daly M; Biological Sciences Department, NYC College of Technology (CUNY), 300 Jay Street, Brooklyn, NY, 11201, USA. mbrugler@citytech.cuny.edu.
BMC Genomics ; 16: 221, 2015 Mar 21.
Article em En | MEDLINE | ID: mdl-25886045
ABSTRACT

BACKGROUND:

The use of venom in intraspecific aggression is uncommon and venom-transmitting structures specifically used for intraspecific competition are found in few lineages of venomous taxa. Next-generation transcriptome sequencing allows robust characterization of venom diversity and exploration of functionally unique tissues. Using a tissue-specific RNA-seq approach, we investigate the venom composition and gene ontology diversity of acrorhagi, specialized structures used in intraspecific competition, in aggressive and non-aggressive polyps of the aggregating sea anemone Anthopleura elegantissima (Cnidaria Anthozoa Hexacorallia Actiniaria Actiniidae).

RESULTS:

Collectively, we generated approximately 450,000 transcripts from acrorhagi of aggressive and non-aggressive polyps. For both transcriptomes we identified 65 candidate sea anemone toxin genes, representing phospholipase A2s, cytolysins, neurotoxins, and acrorhagins. When compared to previously characterized sea anemone toxin assemblages, each transcriptome revealed greater within-species sequence divergence across all toxin types. The transcriptome of the aggressive polyp had a higher abundance of type II voltage gated potassium channel toxins/Kunitz-type protease inhibitors and type II acrorhagins. Using toxin-like proteins from other venomous taxa, we also identified 612 candidate toxin-like transcripts with signaling regions, potentially unidentified secretory toxin-like proteins. Among these, metallopeptidases and cysteine rich (CRISP) candidate transcripts were in high abundance. Furthermore, our gene ontology analyses identified a high prevalence of genes associated with "blood coagulation" and "positive regulation of apoptosis", as well as "nucleoside sodium symporter activity" and "ion channel binding". The resulting assemblage of expressed genes may represent synergistic proteins associated with toxins or proteins related to the morphology and behavior exhibited by the aggressive polyp.

CONCLUSION:

We implement a multifaceted approach to investigate the assemblage of expressed genes specifically within acrorhagi, specialized structures used only for intraspecific competition. By combining differential expression, phylogenetic, and gene ontology analyses, we identify several candidate toxins and other potentially important proteins in acrorhagi of A. elegantissima. Although not all of the toxins identified are used in intraspecific competition, our analysis highlights some candidates that may play a vital role in intraspecific competition. Our findings provide a framework for further investigation into components of venom used exclusively for intraspecific competition in acrorhagi-bearing sea anemones and potentially other venomous animals.
Assuntos

Texto completo: 1 Coleções: 01-internacional Base de dados: MEDLINE Assunto principal: Pólipos / Transcriptoma / Toxinas Marinhas Tipo de estudo: Prognostic_studies / Risk_factors_studies Limite: Animals Idioma: En Revista: BMC Genomics Assunto da revista: GENETICA Ano de publicação: 2015 Tipo de documento: Article País de afiliação: Estados Unidos

Texto completo: 1 Coleções: 01-internacional Base de dados: MEDLINE Assunto principal: Pólipos / Transcriptoma / Toxinas Marinhas Tipo de estudo: Prognostic_studies / Risk_factors_studies Limite: Animals Idioma: En Revista: BMC Genomics Assunto da revista: GENETICA Ano de publicação: 2015 Tipo de documento: Article País de afiliação: Estados Unidos