Mitogen-activated protein kinase signaling pathways promote low-density lipoprotein receptor-related protein 1-mediated internalization of beta-amyloid protein in primary cortical neurons.
Int J Biochem Cell Biol
; 64: 252-64, 2015 Jul.
Article
em En
| MEDLINE
| ID: mdl-25936756
Mounting evidence suggests that the pathological hallmarks of Alzheimer's disease (AD) are caused by the intraneuronal accumulation of beta-amyloid protein (Aß). Reuptake of extracellular Aß is believed to contribute significantly to the intraneuronal Aß pool in the early stages of AD. Published reports have claimed that the low-density lipoprotein receptor-related protein 1 (LRP1) mediates Aß1-42 uptake and lysosomal trafficking in GT1-7 neuronal cells and mouse embryonic fibroblast non-neuronal cells. However, there is no direct evidence supporting the role of LRP1 in Aß internalization in primary neurons. Our recent study indicated that p38 MAPK and ERK1/2 signaling pathways are involved in regulating α7 nicotinic acetylcholine receptor (α7nAChR)-mediated Aß1-42 uptake in SH-SY5Y cells. This study was designed to explore the regulation of MAPK signaling pathways on LRP1-mediated Aß internalization in neurons. We found that extracellular Aß1-42 oligomers could be internalized into endosomes/lysosomes and mitochondria in cortical neurons. Aß1-42 and LRP1 were also found co-localized in neurons during Aß1-42 internalization, and they could form Aß1-42-LRP1 complex. Knockdown of LRP1 expression significantly decreased neuronal Aß1-42 internalization. Finally, we identified that p38 MAPK and ERK1/2 signaling pathways regulated the internalization of Aß1-42 via LRP1. Therefore, these results demonstrated that LRP1, p38 MAPK and ERK1/2 mediated the internalization of Aß1-42 in neurons and provided evidence that blockade of LRP1 or inhibitions of MAPK signaling pathways might be a potential approach to lowering brain Aß levels and served a potential therapeutic target for AD.
Palavras-chave
Texto completo:
1
Coleções:
01-internacional
Base de dados:
MEDLINE
Assunto principal:
Fragmentos de Peptídeos
/
Receptores de LDL
/
Peptídeos beta-Amiloides
/
Sistema de Sinalização das MAP Quinases
/
Proteínas Supressoras de Tumor
Limite:
Animals
/
Humans
Idioma:
En
Revista:
Int J Biochem Cell Biol
Assunto da revista:
BIOQUIMICA
Ano de publicação:
2015
Tipo de documento:
Article
País de afiliação:
China
País de publicação:
Holanda