Your browser doesn't support javascript.
loading
Deep Sequencing of the Medicago truncatula Root Transcriptome Reveals a Massive and Early Interaction between Nodulation Factor and Ethylene Signals.
Larrainzar, Estíbaliz; Riely, Brendan K; Kim, Sang Cheol; Carrasquilla-Garcia, Noelia; Yu, Hee-Ju; Hwang, Hyun-Ju; Oh, Mijin; Kim, Goon Bo; Surendrarao, Anandkumar K; Chasman, Deborah; Siahpirani, Alireza F; Penmetsa, Ramachandra V; Lee, Gang-Seob; Kim, Namshin; Roy, Sushmita; Mun, Jeong-Hwan; Cook, Douglas R.
Afiliação
  • Larrainzar E; Department of Plant Pathology (E.L., B.K.R., N.C.-G., R.V.P., D.R.C) and Plant Biology Graduate Group (A.K.S.), University of California, Davis, California 95616;Korean Research Institute of Bioscience and Biotechnology, Daejeon 305-806, Republic of Korea (S.C.K., N.K.);Catholic University of Korea,
  • Riely BK; Department of Plant Pathology (E.L., B.K.R., N.C.-G., R.V.P., D.R.C) and Plant Biology Graduate Group (A.K.S.), University of California, Davis, California 95616;Korean Research Institute of Bioscience and Biotechnology, Daejeon 305-806, Republic of Korea (S.C.K., N.K.);Catholic University of Korea,
  • Kim SC; Department of Plant Pathology (E.L., B.K.R., N.C.-G., R.V.P., D.R.C) and Plant Biology Graduate Group (A.K.S.), University of California, Davis, California 95616;Korean Research Institute of Bioscience and Biotechnology, Daejeon 305-806, Republic of Korea (S.C.K., N.K.);Catholic University of Korea,
  • Carrasquilla-Garcia N; Department of Plant Pathology (E.L., B.K.R., N.C.-G., R.V.P., D.R.C) and Plant Biology Graduate Group (A.K.S.), University of California, Davis, California 95616;Korean Research Institute of Bioscience and Biotechnology, Daejeon 305-806, Republic of Korea (S.C.K., N.K.);Catholic University of Korea,
  • Yu HJ; Department of Plant Pathology (E.L., B.K.R., N.C.-G., R.V.P., D.R.C) and Plant Biology Graduate Group (A.K.S.), University of California, Davis, California 95616;Korean Research Institute of Bioscience and Biotechnology, Daejeon 305-806, Republic of Korea (S.C.K., N.K.);Catholic University of Korea,
  • Hwang HJ; Department of Plant Pathology (E.L., B.K.R., N.C.-G., R.V.P., D.R.C) and Plant Biology Graduate Group (A.K.S.), University of California, Davis, California 95616;Korean Research Institute of Bioscience and Biotechnology, Daejeon 305-806, Republic of Korea (S.C.K., N.K.);Catholic University of Korea,
  • Oh M; Department of Plant Pathology (E.L., B.K.R., N.C.-G., R.V.P., D.R.C) and Plant Biology Graduate Group (A.K.S.), University of California, Davis, California 95616;Korean Research Institute of Bioscience and Biotechnology, Daejeon 305-806, Republic of Korea (S.C.K., N.K.);Catholic University of Korea,
  • Kim GB; Department of Plant Pathology (E.L., B.K.R., N.C.-G., R.V.P., D.R.C) and Plant Biology Graduate Group (A.K.S.), University of California, Davis, California 95616;Korean Research Institute of Bioscience and Biotechnology, Daejeon 305-806, Republic of Korea (S.C.K., N.K.);Catholic University of Korea,
  • Surendrarao AK; Department of Plant Pathology (E.L., B.K.R., N.C.-G., R.V.P., D.R.C) and Plant Biology Graduate Group (A.K.S.), University of California, Davis, California 95616;Korean Research Institute of Bioscience and Biotechnology, Daejeon 305-806, Republic of Korea (S.C.K., N.K.);Catholic University of Korea,
  • Chasman D; Department of Plant Pathology (E.L., B.K.R., N.C.-G., R.V.P., D.R.C) and Plant Biology Graduate Group (A.K.S.), University of California, Davis, California 95616;Korean Research Institute of Bioscience and Biotechnology, Daejeon 305-806, Republic of Korea (S.C.K., N.K.);Catholic University of Korea,
  • Siahpirani AF; Department of Plant Pathology (E.L., B.K.R., N.C.-G., R.V.P., D.R.C) and Plant Biology Graduate Group (A.K.S.), University of California, Davis, California 95616;Korean Research Institute of Bioscience and Biotechnology, Daejeon 305-806, Republic of Korea (S.C.K., N.K.);Catholic University of Korea,
  • Penmetsa RV; Department of Plant Pathology (E.L., B.K.R., N.C.-G., R.V.P., D.R.C) and Plant Biology Graduate Group (A.K.S.), University of California, Davis, California 95616;Korean Research Institute of Bioscience and Biotechnology, Daejeon 305-806, Republic of Korea (S.C.K., N.K.);Catholic University of Korea,
  • Lee GS; Department of Plant Pathology (E.L., B.K.R., N.C.-G., R.V.P., D.R.C) and Plant Biology Graduate Group (A.K.S.), University of California, Davis, California 95616;Korean Research Institute of Bioscience and Biotechnology, Daejeon 305-806, Republic of Korea (S.C.K., N.K.);Catholic University of Korea,
  • Kim N; Department of Plant Pathology (E.L., B.K.R., N.C.-G., R.V.P., D.R.C) and Plant Biology Graduate Group (A.K.S.), University of California, Davis, California 95616;Korean Research Institute of Bioscience and Biotechnology, Daejeon 305-806, Republic of Korea (S.C.K., N.K.);Catholic University of Korea,
  • Roy S; Department of Plant Pathology (E.L., B.K.R., N.C.-G., R.V.P., D.R.C) and Plant Biology Graduate Group (A.K.S.), University of California, Davis, California 95616;Korean Research Institute of Bioscience and Biotechnology, Daejeon 305-806, Republic of Korea (S.C.K., N.K.);Catholic University of Korea,
  • Mun JH; Department of Plant Pathology (E.L., B.K.R., N.C.-G., R.V.P., D.R.C) and Plant Biology Graduate Group (A.K.S.), University of California, Davis, California 95616;Korean Research Institute of Bioscience and Biotechnology, Daejeon 305-806, Republic of Korea (S.C.K., N.K.);Catholic University of Korea,
  • Cook DR; Department of Plant Pathology (E.L., B.K.R., N.C.-G., R.V.P., D.R.C) and Plant Biology Graduate Group (A.K.S.), University of California, Davis, California 95616;Korean Research Institute of Bioscience and Biotechnology, Daejeon 305-806, Republic of Korea (S.C.K., N.K.);Catholic University of Korea,
Plant Physiol ; 169(1): 233-65, 2015 Sep.
Article em En | MEDLINE | ID: mdl-26175514
ABSTRACT
The legume-rhizobium symbiosis is initiated through the activation of the Nodulation (Nod) factor-signaling cascade, leading to a rapid reprogramming of host cell developmental pathways. In this work, we combine transcriptome sequencing with molecular genetics and network analysis to quantify and categorize the transcriptional changes occurring in roots of Medicago truncatula from minutes to days after inoculation with Sinorhizobium medicae. To identify the nature of the inductive and regulatory cues, we employed mutants with absent or decreased Nod factor sensitivities (i.e. Nodulation factor perception and Lysine motif domain-containing receptor-like kinase3, respectively) and an ethylene (ET)-insensitive, Nod factor-hypersensitive mutant (sickle). This unique data set encompasses nine time points, allowing observation of the symbiotic regulation of diverse biological processes with high temporal resolution. Among the many outputs of the study is the early Nod factor-induced, ET-regulated expression of ET signaling and biosynthesis genes. Coupled with the observation of massive transcriptional derepression in the ET-insensitive background, these results suggest that Nod factor signaling activates ET production to attenuate its own signal. Promoterß-glucuronidase fusions report ET biosynthesis both in root hairs responding to rhizobium as well as in meristematic tissue during nodule organogenesis and growth, indicating that ET signaling functions at multiple developmental stages during symbiosis. In addition, we identified thousands of novel candidate genes undergoing Nod factor-dependent, ET-regulated expression. We leveraged the power of this large data set to model Nod factor- and ET-regulated signaling networks using MERLIN, a regulatory network inference algorithm. These analyses predict key nodes regulating the biological process impacted by Nod factor perception. We have made these results available to the research community through a searchable online resource.
Assuntos

Texto completo: 1 Coleções: 01-internacional Base de dados: MEDLINE Assunto principal: Proteínas de Plantas / Transdução de Sinais / Raízes de Plantas / Medicago truncatula / Etilenos / Sequenciamento de Nucleotídeos em Larga Escala / Transcriptoma Tipo de estudo: Prognostic_studies Idioma: En Revista: Plant Physiol Ano de publicação: 2015 Tipo de documento: Article

Texto completo: 1 Coleções: 01-internacional Base de dados: MEDLINE Assunto principal: Proteínas de Plantas / Transdução de Sinais / Raízes de Plantas / Medicago truncatula / Etilenos / Sequenciamento de Nucleotídeos em Larga Escala / Transcriptoma Tipo de estudo: Prognostic_studies Idioma: En Revista: Plant Physiol Ano de publicação: 2015 Tipo de documento: Article