Your browser doesn't support javascript.
loading
Qubit entanglement between ring-resonator photon-pair sources on a silicon chip.
Silverstone, J W; Santagati, R; Bonneau, D; Strain, M J; Sorel, M; O'Brien, J L; Thompson, M G.
Afiliação
  • Silverstone JW; Centre for Quantum Photonics, H. H. Wills Physics Laboratory and Department of Electrical and Electronic Engineering, University of Bristol, Merchant Venturers Building, Woodland Road, Bristol BS8 1UB, UK.
  • Santagati R; Centre for Quantum Photonics, H. H. Wills Physics Laboratory and Department of Electrical and Electronic Engineering, University of Bristol, Merchant Venturers Building, Woodland Road, Bristol BS8 1UB, UK.
  • Bonneau D; Centre for Quantum Photonics, H. H. Wills Physics Laboratory and Department of Electrical and Electronic Engineering, University of Bristol, Merchant Venturers Building, Woodland Road, Bristol BS8 1UB, UK.
  • Strain MJ; Institute of Photonics, Department of Physics, University of Strathclyde, Wolfson Centre, 106 Rottenrow East, Glasgow G4 0NW, UK.
  • Sorel M; School of Engineering, University of Glasgow, James Watt South Building, Glasgow G12 8QQ, UK.
  • O'Brien JL; Centre for Quantum Photonics, H. H. Wills Physics Laboratory and Department of Electrical and Electronic Engineering, University of Bristol, Merchant Venturers Building, Woodland Road, Bristol BS8 1UB, UK.
  • Thompson MG; Centre for Quantum Photonics, H. H. Wills Physics Laboratory and Department of Electrical and Electronic Engineering, University of Bristol, Merchant Venturers Building, Woodland Road, Bristol BS8 1UB, UK.
Nat Commun ; 6: 7948, 2015 Aug 06.
Article em En | MEDLINE | ID: mdl-26245267
Entanglement--one of the most delicate phenomena in nature--is an essential resource for quantum information applications. Scalable photonic quantum devices must generate and control qubit entanglement on-chip, where quantum information is naturally encoded in photon path. Here we report a silicon photonic chip that uses resonant-enhanced photon-pair sources, spectral demultiplexers and reconfigurable optics to generate a path-entangled two-qubit state and analyse its entanglement. We show that ring-resonator-based spontaneous four-wave mixing photon-pair sources can be made highly indistinguishable and that their spectral correlations are small. We use on-chip frequency demultiplexers and reconfigurable optics to perform both quantum state tomography and the strict Bell-CHSH test, both of which confirm a high level of on-chip entanglement. This work demonstrates the integration of high-performance components that will be essential for building quantum devices and systems to harness photonic entanglement on the large scale.

Texto completo: 1 Coleções: 01-internacional Base de dados: MEDLINE Idioma: En Revista: Nat Commun Assunto da revista: BIOLOGIA / CIENCIA Ano de publicação: 2015 Tipo de documento: Article País de publicação: Reino Unido

Texto completo: 1 Coleções: 01-internacional Base de dados: MEDLINE Idioma: En Revista: Nat Commun Assunto da revista: BIOLOGIA / CIENCIA Ano de publicação: 2015 Tipo de documento: Article País de publicação: Reino Unido