Your browser doesn't support javascript.
loading
Reversal of Mitochondrial Transhydrogenase Causes Oxidative Stress in Heart Failure.
Nickel, Alexander G; von Hardenberg, Albrecht; Hohl, Mathias; Löffler, Joachim R; Kohlhaas, Michael; Becker, Janne; Reil, Jan-Christian; Kazakov, Andrey; Bonnekoh, Julia; Stadelmaier, Moritz; Puhl, Sarah-Lena; Wagner, Michael; Bogeski, Ivan; Cortassa, Sonia; Kappl, Reinhard; Pasieka, Bastian; Lafontaine, Michael; Lancaster, C Roy D; Blacker, Thomas S; Hall, Andrew R; Duchen, Michael R; Kästner, Lars; Lipp, Peter; Zeller, Tanja; Müller, Christian; Knopp, Andreas; Laufs, Ulrich; Böhm, Michael; Hoth, Markus; Maack, Christoph.
Afiliação
  • Nickel AG; Klinik für Innere Medizin III, Universitätsklinikum des Saarlandes, 66421 Homburg, Germany.
  • von Hardenberg A; Klinik für Innere Medizin III, Universitätsklinikum des Saarlandes, 66421 Homburg, Germany.
  • Hohl M; Klinik für Innere Medizin III, Universitätsklinikum des Saarlandes, 66421 Homburg, Germany.
  • Löffler JR; Klinik für Innere Medizin III, Universitätsklinikum des Saarlandes, 66421 Homburg, Germany.
  • Kohlhaas M; Klinik für Innere Medizin III, Universitätsklinikum des Saarlandes, 66421 Homburg, Germany.
  • Becker J; Klinik für Innere Medizin III, Universitätsklinikum des Saarlandes, 66421 Homburg, Germany.
  • Reil JC; Klinik für Innere Medizin III, Universitätsklinikum des Saarlandes, 66421 Homburg, Germany.
  • Kazakov A; Klinik für Innere Medizin III, Universitätsklinikum des Saarlandes, 66421 Homburg, Germany.
  • Bonnekoh J; Klinik für Innere Medizin III, Universitätsklinikum des Saarlandes, 66421 Homburg, Germany.
  • Stadelmaier M; Klinik für Innere Medizin III, Universitätsklinikum des Saarlandes, 66421 Homburg, Germany.
  • Puhl SL; Klinik für Innere Medizin III, Universitätsklinikum des Saarlandes, 66421 Homburg, Germany.
  • Wagner M; Klinik für Innere Medizin III, Universitätsklinikum des Saarlandes, 66421 Homburg, Germany.
  • Bogeski I; Department of Biophysics, CIPMM, School of Medicine, Saarland University, 66421 Homburg, Germany.
  • Cortassa S; Johns Hopkins University, Baltimore, MD 21218, USA.
  • Kappl R; Department of Biophysics, CIPMM, School of Medicine, Saarland University, 66421 Homburg, Germany.
  • Pasieka B; Department of Biophysics, CIPMM, School of Medicine, Saarland University, 66421 Homburg, Germany.
  • Lafontaine M; Department of Structural Biology, Saarland University, 66421 Homburg, Germany.
  • Lancaster CR; Department of Structural Biology, Saarland University, 66421 Homburg, Germany.
  • Blacker TS; Department of Cell and Developmental Biology, University College London, London WC1E 6BT, UK; Department of Physics and Astronomy, University College London, London WC1E 6BT, UK.
  • Hall AR; The Hatter Cardiovascular Institute, University College London, London WC1E 6BT, UK.
  • Duchen MR; Department of Cell and Developmental Biology, University College London, London WC1E 6BT, UK.
  • Kästner L; Institut für Zellbiologie, Universität des Saarlandes, 66421 Homburg, Germany.
  • Lipp P; Institut für Zellbiologie, Universität des Saarlandes, 66421 Homburg, Germany.
  • Zeller T; Klinik für Allgemeine und Interventionelle Kardiologie, Universitäres Herzzentrum Hamburg, 20246 Hamburg, Germany; Deutsches Zentrum für Herzkreislaufforschung (DZHK e.V.), Partner Site Hamburg/Lübeck/Kiel, Germany.
  • Müller C; Klinik für Allgemeine und Interventionelle Kardiologie, Universitäres Herzzentrum Hamburg, 20246 Hamburg, Germany; Deutsches Zentrum für Herzkreislaufforschung (DZHK e.V.), Partner Site Hamburg/Lübeck/Kiel, Germany.
  • Knopp A; Klinik für Innere Medizin III, Universitätsklinikum des Saarlandes, 66421 Homburg, Germany.
  • Laufs U; Klinik für Innere Medizin III, Universitätsklinikum des Saarlandes, 66421 Homburg, Germany.
  • Böhm M; Klinik für Innere Medizin III, Universitätsklinikum des Saarlandes, 66421 Homburg, Germany.
  • Hoth M; Department of Biophysics, CIPMM, School of Medicine, Saarland University, 66421 Homburg, Germany.
  • Maack C; Klinik für Innere Medizin III, Universitätsklinikum des Saarlandes, 66421 Homburg, Germany. Electronic address: christoph.maack@uks.eu.
Cell Metab ; 22(3): 472-84, 2015 Sep 01.
Article em En | MEDLINE | ID: mdl-26256392
ABSTRACT
Mitochondrial reactive oxygen species (ROS) play a central role in most aging-related diseases. ROS are produced at the respiratory chain that demands NADH for electron transport and are eliminated by enzymes that require NADPH. The nicotinamide nucleotide transhydrogenase (Nnt) is considered a key antioxidative enzyme based on its ability to regenerate NADPH from NADH. Here, we show that pathological metabolic demand reverses the direction of the Nnt, consuming NADPH to support NADH and ATP production, but at the cost of NADPH-linked antioxidative capacity. In heart, reverse-mode Nnt is the dominant source for ROS during pressure overload. Due to a mutation of the Nnt gene, the inbred mouse strain C57BL/6J is protected from oxidative stress, heart failure, and death, making its use in cardiovascular research problematic. Targeting Nnt-mediated ROS with the tetrapeptide SS-31 rescued mortality in pressure overload-induced heart failure and could therefore have therapeutic potential in patients with this syndrome.
Assuntos

Texto completo: 1 Coleções: 01-internacional Base de dados: MEDLINE Assunto principal: Estresse Oxidativo / Insuficiência Cardíaca / Mitocôndrias Cardíacas / NADP Trans-Hidrogenases / NADP Tipo de estudo: Etiology_studies Limite: Animals Idioma: En Revista: Cell Metab Assunto da revista: METABOLISMO Ano de publicação: 2015 Tipo de documento: Article País de afiliação: Alemanha

Texto completo: 1 Coleções: 01-internacional Base de dados: MEDLINE Assunto principal: Estresse Oxidativo / Insuficiência Cardíaca / Mitocôndrias Cardíacas / NADP Trans-Hidrogenases / NADP Tipo de estudo: Etiology_studies Limite: Animals Idioma: En Revista: Cell Metab Assunto da revista: METABOLISMO Ano de publicação: 2015 Tipo de documento: Article País de afiliação: Alemanha