Your browser doesn't support javascript.
loading
Aqueous Synthesis of PEGylated Quantum Dots with Increased Colloidal Stability and Reduced Cytotoxicity.
Ulusoy, Mehriban; Jonczyk, Rebecca; Walter, Johanna-Gabriela; Springer, Sergej; Lavrentieva, Antonina; Stahl, Frank; Green, Mark; Scheper, Thomas.
Afiliação
  • Green M; Department of Physics, King's College London , The Strand, WC2R 2LS London, U.K.
Bioconjug Chem ; 27(2): 414-26, 2016 Feb 17.
Article em En | MEDLINE | ID: mdl-26567697
ABSTRACT
Ligands used on the surface of colloidal nanoparticles (NPs) have a significant impact on physiochemical properties of NPs and their interaction in biological environments. In this study, we report a one-pot aqueous synthesis of 3-mercaptopropionic acid (MPA)-functionalized CdTe/CdS/ZnS quantum dots (Qdots) in the presence of thiol-terminated methoxy polyethylene glycol (mPEG) molecules as a surface coordinating ligand. The resulting mPEG-Qdots were characterized by using ζ potential, FTIR, thermogravimetric (TG) analysis, and microscale thermophoresis (MST) studies. We investigated the effect of mPEG molecules and their grafting density on the Qdots photophysical properties, colloidal stability, protein binding affinity, and in vitro cellular toxicity. Moreover, cellular binding features of the resulting Qdots were examined by using three-dimensional (3D) tumor-like spheroids, and the results were discussed in detail. Promisingly, mPEG ligands were found to increase colloidal stability of Qdots, reduce adsorption of proteins to the Qdot surface, and mitigate Qdot-induced side effects to a great extent. Flow cytometry and confocal microscopy studies revealed that PEGylated Qdots exhibited distinctive cellular interactions with respect to their mPEG grafting density. As a result, mPEG molecules demonstrated a minimal effect on the ZnS shell deposition and the Qdot fluorescence efficiency at a low mPEG density, whereas they showed pronounced effect on Qdot colloidal stability, protein binding affinity, cytotoxicity, and nonspecific binding at a higher mPEG grafting amount.
Assuntos

Texto completo: 1 Coleções: 01-internacional Base de dados: MEDLINE Assunto principal: Polietilenoglicóis / Sulfetos / Telúrio / Compostos de Zinco / Compostos de Cádmio / Pontos Quânticos Limite: Animals / Humans Idioma: En Revista: Bioconjug Chem Assunto da revista: BIOQUIMICA Ano de publicação: 2016 Tipo de documento: Article

Texto completo: 1 Coleções: 01-internacional Base de dados: MEDLINE Assunto principal: Polietilenoglicóis / Sulfetos / Telúrio / Compostos de Zinco / Compostos de Cádmio / Pontos Quânticos Limite: Animals / Humans Idioma: En Revista: Bioconjug Chem Assunto da revista: BIOQUIMICA Ano de publicação: 2016 Tipo de documento: Article